Acta Biomater
Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic.
Published: December 2024
Various studies have correlated the mechanical properties of the aortic wall with its biochemical parameters and inner structure. Very few studies have addressed correlations with the cohesive properties, which are crucial for understanding fracture phenomena such as aortic dissection, i.e. a life-threatening process. Aimed at filling this gap, we conducted a comprehensive biochemical and histological analysis of human aortas (the ascending and descending thoracic and infrarenal abdominal aorta) from 34 cadavers obtained post-mortem during regular autopsies. The pentosidine, hydroxyproline and calcium contents, calcium/phosphorus molar ratio, degree of atherosclerosis, area fraction of elastin, collagen type I and III, alpha smooth muscle actin, vasa vasorum, vasa vasorum density, aortic wall thickness, thicknesses of the adventitia, media and intima were determined and correlated with the delamination forces in the longitudinal and circumferential directions of the vessel as determined from identical cadavers. The majority of the parameters determined did not indicate significant correlation with age, except for the calcium content and collagen maturation (enzymatic crosslinking). The main results concern differences between enzymatic and non-enzymatic crosslinking and those caused by the presence of atherosclerosis. The enzymatic crosslinking of collagen increased with age and was accompanied by a decrease in the delamination strength, while non-enzymatic crosslinking tended to decrease with age and was accompanied by an increase in the delamination strength. As the rate of calcification increased, the presence of atherosclerosis led to the formation of calcium phosphate plaques with higher solubility than the tissue without or with only mild signs of atherosclerosis. STATEMENT OF SIGNIFICANCE: This study presents a detailed biochemical and histological analysis of human aortic samples (ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta) taken from 34 cadavers. The contribution of this scientific study lies in the detailed biochemical comparison of the enzymatic and non-enzymatic glycosylation-derived crosslinks of vascular tissues and their influence on the delamination strength of the human aorta since, to the best of our knowledge, no such comprehensive studies exist in the literature. A further benefit concerns the notification of the limitations of the various analytical methods applied; an important factor that must be taken into account in such studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.11.002 | DOI Listing |
Polymers (Basel)
January 2025
Department of Manufacturing Engineering, Technical University from Cluj-Napoca, 400001 Cluj-Napoca, Romania.
The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 27343 Buštěhrad, Czech Republic.
This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA.
In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Marine Engineering, Gdynia Maritime University, Morska St. 81-87, 81-225 Gdynia, Poland.
This paper presents the application of Kolmogorov-Sinai (EK-S) metric entropy calculations performed on experimental data sets (relative elongations ε) recorded during static tensile testing of a composite material with carbonisate. The EK-S calculation method makes it possible to represent the dynamics of strain change occurring during the endurance test. The depiction of the change in the dynamics of elongation compared to the course of the tensile curve makes it possible to analyse the strength properties of the tested specimens.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Jiangxi Provincial Key Laboratory of Materials Surface Engineering, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China.
To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.