The BeamSplitter - An algorithm providing the dose per control point of radiation therapy treatment plans.

Phys Med

Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria 3000, Australia; Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia.

Published: December 2024

AI Article Synopsis

  • The BeamSplitter is a new algorithm for commercial radiation therapy planning systems that enables four-dimensional (4D) dose calculations, which are important for minimizing dose-rate impact on devices like pacemakers and enhancing patient-specific quality assurance.
  • A study involving 21 patients treated in 2022 demonstrated that the dose distributions calculated by BeamSplitter were highly accurate, with over 90% gamma passing rates and an average percentage error of less than 1% compared to reference doses.
  • This innovation is significant as it's the first validated algorithm capable of 4D dose calculations in a commercial treatment planning system, enhancing the precision of radiation therapy.

Article Abstract

Purpose: Commercial radiation therapy treatment planning systems (TPS) provide the three-dimensional time-integrated planned dose distribution. A four-dimensional (4D) dose calculation is essential to minimise dose-rate effects on pacemaker or in total body irradiation treatment or for time-dependent patient-specific quality assurance. We introduce the BeamSplitter, an algorithm in a commercial TPS generating 4D dose calculation.

Methods: Automation was performed with the Eclipse Scripting Application Programming Interface (ESAPI, v16, Varian Medical System). The accumulated and reference dose distributions of twenty-one patients treated in 2022 at our institution were compared. The patients were selected to cover a broad range of modulated delivery techniques and plan complexity, quantified with the average leaf pair opening (ALPO). The dose distributions were compared with gamma passing rates (γPR). Moreover, the mean absolute percentage error (MAPE) between accumulated and reference dose metrics (planning target volume (PTV) D99% / D95% in stereotactic / non-stereotactic treatment, organs at risk (OAR) D5cc / D0.03 cc, and mean dose) was calculated. Dose accumulation was validated by point dose measurement.

Results: The ALPO ranged from 11.6 mm to 77 mm. The accumulated and reference dose distributions were similar (γPR > 90 % in all patients). The MAPE between reference and accumulated dose metrics was lower than 1 % in all cases. The average dose difference through time between the accumulated and measured dose was lower than our clinical tolerance of 3 %.

Conclusions: The BeamSplitter is the first validated algorithm generating a 4D dose calculation of radiation therapy treatment plans within a commercial TPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2024.104845DOI Listing

Publication Analysis

Top Keywords

dose
15
radiation therapy
12
therapy treatment
12
accumulated reference
12
reference dose
12
dose distributions
12
beamsplitter algorithm
8
treatment plans
8
dose calculation
8
commercial tps
8

Similar Publications

CD30-directed CART cell therapy (CART30) has limited efficacy in relapsed or refractory patients with CD30+ lymphoma, with a low proportion of durable responses. We have developed an academic CART30 cell product (HSP-CAR30) by combining strategies to improve performance. HSP-CAR30 targets a proximal epitope within the non-soluble part of CD30, and the manufacturing process includes a modulation of ex vivo T cell activation, as well as the addition of interleukin-21 to IL-7 and IL-15 to promote stemness of T cells.

View Article and Find Full Text PDF

Omnipolar mapping versus point-by-point mapping approach for catheter ablation of atrioventricular accessory pathway.

J Interv Card Electrophysiol

January 2025

Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.

Background: The conventional mapping approach for the atrioventricular accessory pathway (AP) involves point-by-point mapping to identify the connection sites of the AP to the atria or ventricle and accurate interpretation of local electrograms. Omnipolar mapping technology (OMT) explains how vector and wave speed are produced by using both unipolar and bipolar signals to obtain omnipolar signals, directions, and conduction velocity. The aim of this study is to verify the effectiveness of OMT for catheter ablation of AP.

View Article and Find Full Text PDF

Increasing matrix metalloproteinase-2 activity by treatment of ovine cervical explants with a long-acting analogue of oxytocin (Carbetocin) at the expected time of artificial insemination.

Vet Res Commun

January 2025

Biochemistry, Veterinary Biosciences Department, Veterinary Faculty, Universidad de la República, Ruta 8, Km 18 y Ruta 102, Montevideo, 13000, Uruguay.

The aim was to study the effect of long-acting analogue of oxytocin (Carbetocin) on cervical collagenolysis of MAP-eCG synchronized ewes. At the expected time of artificial insemination, five ewes were slaughtered (n = 5) and their cervical explants (100-200 mg) were incubated during 12 h with MEM supplemented with 0, 8, 16, 32 and 64 ng/mL of Cb. Activities of activated and latent forms of matrix metalloproteinases-2 and - 9 (MMP-2 and MMP-9, respectively) in the supernatant were determined by a SDS-PAGE zymography and prostaglandin E2 concentration by immunoassay.

View Article and Find Full Text PDF

Background: ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models.

Methods: To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!