A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion. | LitMetric

AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion.

Comput Med Imaging Graph

Key Laboratory of Biorheological Science and Technology, Bioengineering College,  Chongqing University, China. Electronic address:

Published: December 2024

Accurate segmentation of ankle and foot bones from CT scans is essential for morphological analysis. Ankle and foot bone segmentation challenges due to the blurred bone boundaries, narrow inter-bone gaps, gaps in the cortical shell, and uneven spongy bone textures. Our study endeavors to create a deep learning framework that harnesses advantages of 3D deep learning and tackles the hurdles in accurately segmenting ankle and foot bones from clinical CT scans. A few-shot framework AFSegNet is proposed considering the computational cost, which comprises three 3D deep-learning networks adhering to the principles of progressing from simple to complex tasks and network structures. Specifically, a shallow network first over-segments the foreground, and along with the foreground ground truth are used to supervise a subsequent network to detect the over-segmented regions, which are overwhelmingly inter-bone gaps. The foreground and inter-bone gap probability map are then input into a network with multi-scale attentions and feature fusion, a loss function combining region-, boundary-, and topology-based terms to get the fine-level bone segmentation. AFSegNet is applied to the 16-class segmentation task utilizing 123 in-house CT scans, which only requires a GPU with 24 GB memory since the three sub-networks can be successively and individually trained. AFSegNet achieves a Dice of 0.953 and average surface distance of 0.207. The ablation study and comparison with two basic state-of-the-art networks indicates the effectiveness of the progressively distilled features, attention and feature fusion modules, and hybrid loss functions, with the mean surface distance error decreased up to 50 %.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2024.102456DOI Listing

Publication Analysis

Top Keywords

bone segmentation
12
ankle foot
12
foot bones
8
inter-bone gaps
8
deep learning
8
feature fusion
8
surface distance
8
bone
5
segmentation
5
afsegnet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!