A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair. | LitMetric

Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair.

Biomaterials

State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. Electronic address:

Published: April 2025

Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2024.122936DOI Listing

Publication Analysis

Top Keywords

procoagulant antibacterial
12
hemostatic microsheets
12
rapid hemostasis
12
wound healing
12
antibacterial antioxidant
8
porous hydrogel
8
hydrogel adhesives
8
hemostasis wound
8
ultra-high burst
8
burst pressure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!