Multienzyme-mimic Fe single-atom nanozymes regulate infection microenvironment for photothermal-enhanced catalytic antibacterial therapy.

Colloids Surf B Biointerfaces

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Published: January 2025

The rational design of nanozymes with highly efficient reactive oxygen species (ROS) generation to overcome the resistant infection microenvironment still faces a significant challenge. Herein, the highly active Fe single-atom nanozymes (Fe SAzymes) with a hierarchically porous nanostructure were prepared through a colloidal silica-induced template method. The proposed Fe SAzymes with satisfactory oxidase (OD)-like and peroxidase (POD)-like activity can transform O and HO to superoxide anion free radical (•O) and hydroxyl radical (•OH), which possess an excellent bactericidal effect. Also, the glutathione peroxidase (GPX)-like activity of Fe SAzymes can consume glutathione in the infection microenvironment, thus facilitating ROS generation to enhance the sterilization effect. Besides, the intrinsic photothermal effect of Fe SAzymes further significantly boosts the enzyme-like activity to generate much more reactive oxygen species for efficient antibacterial therapy. Accordingly, both in vitro and in vivo results indicate that the Fe SAzymes with synergistically photothermal-catalytic performances exhibit satisfactory antibacterial effects and biocompatibility. This work provides new insights into designing highly efficient SAzymes for effective sterilization applications by an amount of ROS generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114363DOI Listing

Publication Analysis

Top Keywords

infection microenvironment
12
ros generation
12
single-atom nanozymes
8
antibacterial therapy
8
highly efficient
8
reactive oxygen
8
oxygen species
8
sazymes
6
multienzyme-mimic single-atom
4
nanozymes regulate
4

Similar Publications

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Bovine respiratory disease (BRD) is one of the most common economic and health challenges to the beef cattle industry. Prophylactic use of antimicrobial drugs can alter the microbial communities in the respiratory tract. Considering that the bovine upper respiratory tract microbiome has been associated with generalized health, understanding the microenvironment that influences this microbiome may provide insights into the pathogenesis of BRD.

View Article and Find Full Text PDF

Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H.

View Article and Find Full Text PDF

Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.

Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!