Ammonia (NH) is an energy vector with an emerging role in decarbonising heat, power and transport through its direct use as a fuel, or indirectly as a hydrogen carrier. Global ammonia production is having to grow to enable the exploitation of NH for energy decarbonisation, which it is projected will consume >50 % of manufacturing capacity by 2050. Ammonia recovered from wastewater can be directly exploited as a sustainable source of ammonia, to reduce the demand for ammonia produced through the energy intensive Haber-Bosch process, while fostering a triple carbon benefit to the water sector, by: (i) avoiding the energy required for aeration of biological processes; (ii) reducing nitrous oxide emissions associated with ammonia oxidation, which is a potent greenhouse gas; and (iii) producing a zero-carbon energy source that can decarbonise energy use. While previous reviews have described technologies relevant for ammonia recovery, to produce ammonia as a zero-carbon fuel or hydrogen carrier, wastewater ammonia must be transformed into the relevant concentration, phase and achieve the product quality demanded for zero carbon heat, power and transport applications, which are distinct from those demanded for more conventional exploitation routes (e.g. agricultural). This review therefore presents a synthesis of established and emerging technologies for the extraction and concentration of ammonia from wastewater, with specific emphasis on enabling the production of ammonia in a form that can be directly exploited for zero carbon energy generation. A précis of technologies for the valorisation of ammonia as a clean energy or hydrogen resource is also introduced, together with discussion of their relevancy and applicability to the water sector including implications to energy, carbon emissions and financial return. The exploitation of ammonia recovered from wastewater as a zero carbon energy source is shown to offer a critical contemporary response for the water sector that seeks to rapidly decarbonise existing infrastructure, while responding to ever stricter nitrogen discharge limits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122649 | DOI Listing |
Environ Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratório de Análises Genéticas, Departamento de Ciências Naturais e da Terra, Universidade do Estado de Minas Gerais, Divinópolis, MG 35501-170, Brazil. Electronic address:
The rupture of Vale S.A. mining tailings dam in Brumadinho, Brazil, in January 2019 had significant environmental impacts on the Paraopeba River basin.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:
The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.
View Article and Find Full Text PDFExtremophiles
January 2025
Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana, USA.
Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!