Background And Objective: Binge eating disorder (BED) is the most frequent eating disorder, often confused with obesity, with which it shares several characteristics. Early identification could enable targeted therapeutic interventions. In this study, we propose a hybrid pipeline that, starting from plasma glucose data acquired during the Oral Glucose Tolerance Test (OGTT), allows us to classify the two types of patients through computational modeling and artificial intelligence.
Methods: The proposed hybrid pipeline integrates a classical mechanistic model of delayed differential equations (DDE) that describes glucose-insulin dynamics with machine learning (ML) methods. Ad hoc techniques, including structural identifiability analysis, have been employed for refining and evaluating the mathematical model. Additionally, a dedicated pipeline for identifying and optimizing model parameters has been applied to obtain reliable estimates. Robust feature extraction and classifier selection processes were developed to ensure the optimal choice of the best-performing classifier.
Results: By leveraging parameters estimated from the mechanistic model alongside easily obtainable patient information (such as glucose levels at 30 and 120 min post-OGTT, glycated hemoglobin (Hb1Ac), body mass index (BMI), and waist circumference), our approach facilitates accurate classification of patients, enabling tailored therapeutic interventions.
Conclusion: Initial findings, focusing on correctly categorizing patients with BED based on metabolic data, demonstrate promising outcomes. These results suggest significant potential for refinement, including exploration of alternative mechanistic models and machine learning algorithms, to enhance classification accuracy and therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108477 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
JMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFJMIR AI
January 2025
Department of Radiology, Children's National Hospital, Washington, DC, United States.
J Chem Theory Comput
January 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.
Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.
View Article and Find Full Text PDFPLoS One
January 2025
Dirección General de Minería, República Dominicana.
This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!