In previous studies, we identified the clinical antitumor drug candidate Quisinostat is a potent Plasmodium falciparum histone deacetylase (PfHDAC) inhibitor with significant activity against drug-resistant malaria but with severe toxicity. To delve deeper into its antimalarial potential, herein we designed and synthesized 36 novel analogues of Quisinostat and systematically evaluated their antimalarial activities and cytotoxicity. Among them, compounds 33 and 37 could effectively eliminate both wild-type and multidrug resistant P. falciparum parasites along with significantly attenuated cytotoxicity, and their metabolic properties were also notably improved. Western blot analysis showed that 33 and 37 upregulated Plasmodium histone acetylation, suggesting that they exerted antimalarial effects through inhibition of PfHDAC like Quisinostat. Furthermore, compounds 33 and 37 also displayed significant antimalarial therapeutic effect and improved animal safety in rodent malaria model. Collectively, 33 and 37 were structurally novel PfHDAC inhibitors and promising antimalarial lead compounds for the next generation of antimalarial drug research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2024.117985 | DOI Listing |
Mol Divers
December 2024
Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFACS Nano
December 2024
The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!