Aim: We evaluated the quality of noncontrast chest computed tomography (CT) for pediatric patients at two dose levels with and without denoising using a deep convolutional neural network (CNN).

Materials And Methods: Forty children underwent noncontrast chest CTs for "chronic cough" using a routine dose (RD) protocol. Images were reconstructed using iterative reconstruction (IR). A validated noise insertion method was used to simulate 20% dose (TD) data for each case. A deep CNN model was trained and validated on 10 cases and then applied to the remaining 30 cases. Three certificate of qualification (CAQ)-certified pediatric radiologists evaluated 30 cases under 4 conditions: (1) RD + IR; (2) RD + CNN; (3) TD + IR; and (4) TD + CNN. Likert scales were used to score subjective image quality (1-5, 5 = excellent) and subjective noise artifact (1-4, 4 = no noise). Images were reviewed for specific findings.

Results: For the 30 patients evaluated (14 female, mean age: 10.8 years, range: 0.17-17), the mean effective dose was 0.46 ± 0.21 mSv for the original RD exam, with an effective dose of 0.09 mSv for the TD exam. Both RD + CNN (3.6 ± 1.1, p < 0.001) and TD + CNN (3.4 ± 0.9, p = 0.023) had higher image quality than RD + IR (3.1 ± 0.9). Both RD + CNN (3.2 ± 0.9, p-value = <0.001) and TD + CNN (2.9 ± 0.6, p-value = 0.001) showed significantly lower subjective noise artifact scores than RD + IR (2.7 ± 0.7). There was excellent intrareader (RD + IR-RD + CNN: mean κ = 0.96, RD + IR-TD + CNN = 0.96, RD + IR-TD + IR = 0.98) and moderate inter-reader reliability (RD + IR: mean κ = 0.55, RD + CNN = 0.50, TD + CNN = 0.54, TD + IR = 0.57) on all 4 image reconstructions.

Conclusion: CNN denoising outperforms IR as a means of radiation dose reduction in pediatric CT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crad.2024.09.011DOI Listing

Publication Analysis

Top Keywords

computed tomography
8
deep convolutional
8
convolutional neural
8
neural network
8
noncontrast chest
8
image quality
8
effective dose
8
dose
5
radiation dose
4
dose reduction
4

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).

Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.

View Article and Find Full Text PDF

Background: In the case of end-stage hallux rigidus, first metatarsophalangeal (MTP) joint arthrodesis is the gold-standard and is traditionally performed via an open approach. However, complications such as nonunion have been reported to be as high as 30%. Recently, there have been reports demonstrating a percutaneous approach to be effective and safe.

View Article and Find Full Text PDF

Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.

Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).

Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.

View Article and Find Full Text PDF

Molecular Stratification of Light-Chain Cardiac Amyloidosis With F-Florbetapir and Ga-FAPI-04 for Enhanced Prognostic Precision.

JACC Cardiovasc Imaging

January 2025

Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.

Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!