A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interatomic and intermolecular decay processes in quantum fluid clusters. | LitMetric

Interatomic and intermolecular decay processes in quantum fluid clusters.

Rep Prog Phys

Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark.

Published: November 2024

AI Article Synopsis

  • The review investigates electronic decay phenomena in superfluid helium nanodroplets when exposed to extreme ultraviolet radiation, highlighting their unique electronic properties.
  • Key processes include interatomic and intermolecular Coulombic decay, which involve energy transfer and can lead to ionization and low-energy electron emission.
  • The study utilizes advanced experimental and computational techniques, including ultrashort pulses from free-electron lasers, to better understand these interactions and their implications for other systems, particularly in biology.

Article Abstract

In this comprehensive review, we explore interatomic and intermolecular correlated electronic decay phenomena observed in superfluid helium nanodroplets subjected to extreme ultraviolet radiation. Helium nanodroplets, known for their distinctive electronic and quantum fluid properties, provide an ideal environment for examining a variety of non-local electronic decay processes involving the transfer of energy, charge, or both between neighboring sites and resulting in ionization and the emission of low-kinetic energy electrons. Key processes include interatomic or intermolecular Coulombic decay and its variants, such as electron transfer-mediated decay. Insights gained from studying these light-matter interactions in helium nanodroplets enhance our understanding of the effects of ionizing radiation on other condensed-phase systems, including biological matter. We also emphasize the advanced experimental and computational techniques that make it possible to resolve electronic decay processes with high spectral and temporal precision. Utilizing ultrashort pulses from free-electron lasers, the temporal evolution of these processes can be followed, significantly advancing our comprehension of the dynamics within quantum fluid clusters and non-local electronic interactions in nanoscale systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/ad8fbbDOI Listing

Publication Analysis

Top Keywords

interatomic intermolecular
12
decay processes
12
quantum fluid
12
electronic decay
12
helium nanodroplets
12
fluid clusters
8
non-local electronic
8
decay
6
processes
5
electronic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!