A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. | LitMetric

Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.

Chem Rev

Faculty of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany.

Published: November 2024

AI Article Synopsis

  • Methods in chemical biology, specifically genetic code expansion (GCE), have greatly improved the study of integral membrane proteins by allowing the incorporation of noncanonical amino acids (ncAAs).
  • GCE is particularly challenging for membrane proteins due to their unique characteristics and low expression levels, requiring effective use of mammalian cell cultures for functional expression.
  • Recent advancements include engineered AARS/tRNA pairs for better performance in mammalian cells, bioorthogonal reactions for attaching probes to live cell membrane proteins, and an expanded selection of ncAAs for in-depth analysis of protein structure and dynamics.

Article Abstract

Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613316PMC
http://dx.doi.org/10.1021/acs.chemrev.4c00181DOI Listing

Publication Analysis

Top Keywords

membrane proteins
24
noncanonical amino
8
studies membrane
8
membrane
7
proteins
7
gce
5
amino acid
4
acid tools
4
tools application
4
application membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!