Objective: Epilepsy is a chronic neurological disorder related to various etiologies, and the prevalence of active epilepsy is estimated to be between 4 and 10 per 1000 individuals having a significant role in genetic mutations. Next-Generation Sequencing (NGS) panels are utilized for genetic testing, but a substantial proportion of the results remain uncertain and are not considered directly causative of epilepsy. This study aimed to reevaluate pediatric patients diagnosed with epilepsy who underwent genetic investigation using NGS panels, focusing on inconclusive variant findings or multiple variants of uncertain significance (VUSs).
Methods: A subgroup of pediatric patients aged 0-25 years, diagnosed with epilepsy, who underwent genetic investigation with an NGS epilepsy panel at the Child Neurology Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, between 2018 and 2022 through Invitae, was reevaluated. Patients with inconclusive variant findings or multiple VUSs in their test results were included. Genetic data were analyzed to identify potentially pathogenic variants and frequent genetic combinations.
Results: Two unrelated potentially pathogenic variants were identified in the SCN9A and QARS1 genes. A frequent genetic combination, RANBP2&RYR3, was also observed among other combinations. The RANBP2 gene consistently co-occurred with RYR3 variants in uncertain results, suggesting potential pathogenicity. Analysis of unaffected parents' data revealed certain combinations inherited from different parents, suggesting specific gene combinations as possible risk factors for the disease.
Significance: This study highlights the importance of reevaluating genetic data from pediatric epilepsy patients with inconclusive variant findings or multiple VUSs. Identification of potentially pathogenic variants and frequent genetic combinations, such as RANBP2&RYR3, could aid in understanding the genetic basis of epilepsy and identifying potential hotspots.
Plain Language Summary: We have performed a retrospective analysis on a subpopulation of pediatric patients diagnosed with epilepsy. We found that specific genetic variants were repeatable, indicating their potential pathogenicity to the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633689 | PMC |
http://dx.doi.org/10.1002/epi4.13085 | DOI Listing |
Blood
January 2025
KULeuven, Leuven, Belgium.
Thrombomodulin (TM) expressed on endothelial cells regulates coagulation. Specific nonsense variants in the TM gene, THBD, result in high soluble TM levels causing rare bleeding disorder. In contrast, though THBD variants have been associated with venous thromboembolism, this association remains controversial.
View Article and Find Full Text PDFIran J Med Sci
December 2024
Department of Oral and Maxillofacial Radiology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Fibrous dysplasia is a slow-progressing benign condition characterized by abnormal bone formation that leads to some skeletal disorders. Although some of the fibrous dysplasia have unusual clinical and radiographic features that can lead to a challenging diagnosis, most lesions reveal an expansile bone defect due to cortex thinning. This report presented a case of monostotic fibrous dysplasia of a 43-year-old woman with involvement of the right maxillary jaw and sinuses, which indicated unusual histopathological features.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Objective: Interpretation of clinical genetic testing, which identifies a potential genetic etiology in 25% of children with epilepsy, is limited by variants of uncertain significance. Understanding functional consequences of variants can help distinguish pathogenic from benign alleles. We combined automated patch clamp recording with neurophysiological simulations to discern genotype-function-phenotype correlations in a real-world cohort of children with SCN1A-associated epilepsy.
View Article and Find Full Text PDFSci Rep
January 2025
Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 318 Bayi Avenue, Nanchang, 330006, China.
To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.
View Article and Find Full Text PDFPLoS Med
January 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
Background: School closures have been a prominent component of the global Coronavirus Disease 2019 (COVID-19) response. However, their effect on viral transmission, COVID-19 mortality and health care system pressure remains incompletely understood, as traditional observational studies fall short in assessing such population-level impacts.
Methods And Findings: We used a mathematical model to simulate the COVID-19 epidemics of 74 countries, incorporating observed data from 2020 to 2022 and historical school closure timelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!