Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hybrid materials of core-shell particles and cellulose nanowhiskers (CNWs) were synthesized to produce opal films with increasing tensile strength. After the incorporation of CNWs into the processed particle films, differences in the mechanical and optical properties were noticeable, which stemmed from the adhesion forces between the cellulose and the particles' shell material. Two different particle compositions were compared, using polystyrene as cores, and either poly(ethyl acrylate) (PEA) or a copolymer of ethyl acrylate and 3 wt % of 2-hydroxyethyl methacrylate (HEMA) as the shell material. Stronger interactions between the particles containing HEMA and the CNWs were displayed via atomic force microscopy particle manipulation experiments, where higher forces were required to deliberately move P(EA--HEMA) particles on a CNW substrate compared to PEA particles. The stronger interaction behaviors increased the disorder of the particles within the opal films toward photonic glasses with angle-independent structural colors. Also, the increase in tensile strength from <1 MPa at a cellulose content of 0 wt % to 6 MPa at the optimal CNW content of 15 wt % was more pronounced compared to the particle-cellulose mixture with only PEA in the particle shell. Thus, the presence of the hydroxy groups in the particles' shell material on the molecular level significantly influenced the optical and mechanical properties on the macroscopic level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c16816 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!