ADAPT: Analysis of Microbiome Differential Abundance by Pooling Tobit Models.

Bioinformatics

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan, 48109, United States.

Published: November 2024

Motivation: Microbiome differential abundance analysis (DAA) remains a challenging problem despite multiple methods proposed in the literature. The excessive zeros and compositionality of metagenomics data are two main challenges for DAA.

Results: We propose a novel method called "Analysis of Microbiome Differential Abundance by Pooling Tobit Models" (ADAPT) to overcome these two challenges. ADAPT interprets zero counts as left-censored observations to avoid unfounded assumptions and complex models. ADAPT also encompasses a theoretically justified way of selecting non-differentially abundant microbiome taxa as a reference to reveal differentially abundant taxa while avoiding false discoveries. We generate synthetic data using independent simulation frameworks to show that ADAPT has more consistent false discovery rate control and higher statistical power than competitors. We use ADAPT to analyze 16S rRNA sequencing of saliva samples and shotgun metagenomics sequencing of plaque samples collected from infants in the COHRA2 study. The results provide novel insights into the association between the oral microbiome and early childhood dental caries.

Availability And Implementation: The R package ADAPT can be installed from Bioconductor at https://bioconductor.org/packages/release/bioc/html/ADAPT.html or from Github at https://github.com/mkbwang/ADAPT. The source codes for simulation studies and real data analysis are available at https://github.com/mkbwang/ADAPT_example.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btae661DOI Listing

Publication Analysis

Top Keywords

microbiome differential
12
differential abundance
12
abundance pooling
8
pooling tobit
8
adapt
7
microbiome
5
adapt analysis
4
analysis microbiome
4
tobit models
4
models motivation
4

Similar Publications

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Background: Oral microbiome homeostasis is important for children's health, and microbial community is affected by anesthetics. The application of anesthetics in children's oral therapy has become a relatively mature method. This study aims to investigate the effect of different anesthesia techniques on children's oral microbiota.

View Article and Find Full Text PDF

Introduction: Opportunistic infections (IO) are infections of microbiota (fungi, viruses, bacteria, or parasites) that generally do not cause disease but turn into pathogens when the body's defense system is compromised. This can be triggered by various factors, one of which is due to a weakened immune system due to Diabetes Mellitus (DM), which increases the occurrence of opportunistic infections, especially in the oral cavity. Fungal (oral candidiasis) and viral (recurrent intraoral herpes) infections can occur in the oral cavity of DM patients.

View Article and Find Full Text PDF

The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.

View Article and Find Full Text PDF

Colorectal cancer (CRC), an emerging public health concern, is one of the leading causes of cancer morbidity and mortality worldwide. An increasing body of evidence shows that dysfunction in metabolic reprogramming is a crucial characteristic of CRC progression. Specifically, metabolic reprogramming abnormalities in glucose, glutamine and lipid metabolism provide the tumour with energy and nutrients to support its rapid cell proliferation and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!