A supergene controls facultative diapause in the crop pest Helicoverpa armigera.

Cell Rep

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China. Electronic address:

Published: November 2024

Many insect species, including the economically important pest Helicoverpa armigera, avoid unfavorable conditions by suspending development. This form of phenotypic plasticity-facultative diapause-is a complex trait, though its evolution and intricate genetic architecture remain poorly understood. To investigate how such a polygenic trait could be locally adapted, we explore its genetic architecture. We map a large-effect diapause-associated locus to the Z chromosome by crossing high- and low-latitude populations. By generating multiple chromosome-scale assemblies, we identify an ∼5.93-Mb chromosomal inversion that constitutes the locus. Within this inversion, 33 genes harbor divergent non-synonymous mutations, notably including three circadian rhythm genes: Period, Clock, and Cycle. CRISPR-Cas9 knockout experiments confirm that each gene is independently essential for pupal diapause. Thus, a diapause supergene arose within H. armigera via a Z chromosome inversion, enabling local climatic adaptation in this economically important crop pest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114939DOI Listing

Publication Analysis

Top Keywords

crop pest
8
pest helicoverpa
8
helicoverpa armigera
8
genetic architecture
8
supergene controls
4
controls facultative
4
facultative diapause
4
diapause crop
4
armigera insect
4
insect species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!