A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of the Linear Interaction Energy Method to Nitric Oxide Synthase Structure-Based Inhibitor Design. | LitMetric

Application of the Linear Interaction Energy Method to Nitric Oxide Synthase Structure-Based Inhibitor Design.

J Chem Inf Model

Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States.

Published: November 2024

The overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) is associated with several neuropathological conditions. As a result, inhibition of nNOS is a desirable therapeutic goal while avoiding the inhibition of endothelial NOS (eNOS) given its essential role in maintaining cardiovascular tone. Designing inhibitors with high specificity for nNOS over eNOS is challenging given the close similarity in the active site structure of all mammalian NOS isoforms. Computational methods like free energy perturbation (FEP) and thermodynamic integration (TI) offer attractive avenues for rational drug design, but application of these methods to NOS is hindered by several challenges, including proper handling of highly charged inhibitors with diverse structures as well as computational expense. To address these issues, we present a simplified approach combining continuum dielectric generalized born (GB) solvent models with linear interaction energy (LIE) calculations. Our method demonstrates excellent agreement with experimental data for charged inhibitors targeting mammalian NOS isoforms (mNOS). Our results highlight the utility of the GB-LIE method as a promising tool for screening NOS inhibitors and potentially other protein targets with charged active sites and diverse inhibitor structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c01156DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
linear interaction
8
interaction energy
8
oxide synthase
8
mammalian isoforms
8
charged inhibitors
8
application linear
4
energy method
4
method nitric
4
synthase structure-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!