Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Neonatal diabetes is a monogenic condition which can be the presenting feature of complex syndromes. The aim of this study was to identify novel genetic causes of neonatal diabetes with neurological features including developmental delay and epilepsy.
Methods: We performed genome sequencing in 27 individuals with neonatal diabetes plus epilepsy and/or developmental delay of unknown genetic cause. Replication studies were performed in 123 individuals with diabetes diagnosed aged ≤1 year without a known genetic cause using targeted next-generation sequencing.
Results: Three individuals, all diagnosed with diabetes in the first week of life, shared a rare homozygous missense variant, p.(Arg327Gln), in TARS2. Replication studies identified the same homozygous variant in a fourth individual diagnosed with diabetes at 1 year. One proband had epilepsy, one had development delay and two had both. Biallelic TARS2 variants cause a mitochondrial encephalopathy (COXPD-21) characterised by severe hypotonia, epilepsy and developmental delay. Diabetes is not a known feature of COXPD-21. Current evidence suggests that the p.(Arg327Gln) variant disrupts TARS2's regulation of the mTORC1 pathway which is essential for β-cells.
Conclusions: Our findings establish the homozygous p.(Arg327Gln) TARS2 variant as a novel cause of syndromic neonatal diabetes and uncover a role for TARS2 in pancreatic β-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dme.15471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!