Source localization in EEG necessitates co-registering the EEG sensor locations with the subject's MRI, where EEG sensor locations are typically captured using electromagnetic tracking or 3D scanning of the subject's head with EEG cap, using commercially available 3D scanners. Both methods have drawbacks, where, electromagnetic tracking is slow and immobile, while 3D scanners are expensive. Photogrammetry offers a cost-effective alternative but requires multiple photos to sample the head, with good spatial sampling to adequately reconstruct the head surface. Post-reconstruction, the existing tools for electrode position labelling on the 3D head-surface have limited visual feedback and do not easily accommodate customized montages, which are typical in multi-modal measurements. We introduce Mark3D, an open-source, integrated tool for 3D head-surface reconstruction from phone camera video. It eliminates the need for keeping track of spatial sampling during image capture for video-based photogrammetry reconstruction. It also includes blur detection algorithms, a user-friendly interface for electrode and tracking, and integrates with popular toolboxes such as FieldTrip and MNE Python. The accuracy of the proposed method was benchmarked with the head-surface derived from a commercially available handheld 3D scanner Einscan-Pro + (Shining 3D Inc.,) which we treat as the "ground truth". We used reconstructed head-surfaces of ground truth (G1) and phone camera video (M) to mark the EEG electrode locations in 3D space using a dedicated UI provided in the tool. The electrode locations were then used to form pseudo-specific MRI templates for individual subjects to reconstruct source information. Somatosensory source activations in response to vibrotactile stimuli were estimated and compared between G1 and M. The mean positional errors of the EEG electrodes between G1 and M in 3D space were found to be 0.09 ± 0.01 mm across different cortical areas, with temporal and occipital areas registering a relatively higher error than other regions such as frontal, central or parietal areas. The error in source reconstruction was found to be 0.033 ± 0.016 mm and 0.037 ± 0.017 mm in the left and right cortical hemispheres respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-024-03228-3 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.
Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Technology, Quaid e Awam University, Nawabshah 67450, Pakistan.
Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed.
View Article and Find Full Text PDFJ Occup Health
January 2025
Panasonic Corporation, Department Electric Works Company/Engineering Division, Osaka, Japan.
Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.
Methods: Train data (n=190, age 54.
Sci Rep
January 2025
Department of Exercise Science, Syracuse University, 150 Crouse Dr, Syracuse, NY, 13244, USA.
Analyzing video footage of falls in older adults has emerged as an alternative to traditional lab studies. However, this approach is limited by the labor-intensive process of manually labeling body parts. To address this limitation, we aimed to validate the use of the AI-based pose estimation algorithm (OpenPose) in assessing the hip impact velocity and acceleration of video-captured falls.
View Article and Find Full Text PDFJ Pediatr
January 2025
Nanit Research Department, New York, New York.
Objective: To examine prospectively the relationship between teething and infant sleep using objective sleep measurements.
Study Design: Over a 4-week period, 849 infants aged 3-18 months (mean = 8.4 ± 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!