Review of recent advances in utilising aquaculture wastewater for algae cultivation and microalgae-based bioproduct recovery.

Environ Geochem Health

Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.

Published: November 2024

Aquaculture operations produce large amounts of wastewater contaminated with organic matter, nitrogenous compounds, and other emerging contaminants; when discharged into natural water bodies, it could result in ecological problems and severely threaten aquatic habitats and human health. However, using aquaculture wastewater in biorefinery systems is becoming increasingly crucial as advancements in valuable bioproduct production continue to improve economic feasibility. Research on utilising microalgae as an alternative to producing biomass and removing nutrients from aquaculture wastewater has been extensively studied over the past decades. Microalgae have the potential to use carbon dioxide (CO) effectively and significantly reduce carbon footprint, and the harvested biomass can also be used as aquafeed. Furthermore, aquaculture wastewater enriched with phosphorus (P) is a potential resource for P recovery for the production of biofertiliser. This will reduce the P supply shortage and eliminate the environmental consequences of eutrophication. In this context, the present review aims to provide a comprehensive overview of the current state of the art in a generation, as well as the characteristics and environmental impact of aquaculture wastewater reported by the most recent research. Furthermore, the review synthesized recent developments in algal biomass cultivation using aquaculture wastewater and its utilisation as biorefinery feedstocks for producing value-added products, such as aquafeeds, bioethanol, biodiesel, biomethane, and bioenergy. This integrated process provides a sustainable method for recovering biomass and water, fully supporting the framework of a circular economy in aquaculture wastewater treatment via resource recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-024-02286-8DOI Listing

Publication Analysis

Top Keywords

aquaculture wastewater
28
aquaculture
8
wastewater
8
resource recovery
8
review advances
4
advances utilising
4
utilising aquaculture
4
wastewater algae
4
algae cultivation
4
cultivation microalgae-based
4

Similar Publications

Introduction: The intensification of tilapia production has increased animal density in tanks, leading to more frequent exposure to pathogenic agents and compromising the quality of fish products. Antimicrobial resistance is a global concern that affects human treatment, and sentinel microorganisms like are crucial for monitoring production chains, especially in aquaculture, where research is still limited. The aim of this study was to identify the presence of and investigate its antimicrobial resistance profiles throughout the entire tilapia production chain.

View Article and Find Full Text PDF

Residual heavy metals and antibiotic pollution in abandoned breeding areas along the northeast coast of Hainan Island, China.

Mar Pollut Bull

January 2025

Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China. Electronic address:

To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl and Na were as high as 4.

View Article and Find Full Text PDF
Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

This study aims to evaluate the black bullhead , an invasive alien fish (IAF) in Serbia, as a bioindicator organism and assess the safety of natural and aquaculture specimens for human consumption. A set of biomarkers was analysed to assess the bioindicator potential at a site exposed to agricultural activities. The genotoxic response was determined by an alkaline comet assay and micronucleus assay in fish erythrocytes, and the metal pollution index (MPI) was calculated to assess the toxic element burden on fish.

View Article and Find Full Text PDF

Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

Pharmaceutical and aquaculture wastewater contains not only antibiotics but also high concentrations of nitrogen, but few studies have been conducted on bacteria that target this complex pollution for degradation. A novel heterotrophic nitrifying aerobic denitrifying (HN-AD) strain Acinetobacter pittii TR1 isolated from soil. When the C/N ratio was 20, the strain could degrade 50 mg/L roxithromycin (ROX) and the nitrogen removal rate was 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!