Aristolochic acid (AA) ingestion causes Balkan nephropathy, characterized by tubular injury and progression to chronic kidney disease (CKD). AA is taken up by proximal tubule cells via organic anion transport and induces p21-mediated DNA damage response, but little is known about dietary modulating factors. Western diet (WD) is rich in saturated fats and sugars and can promote metabolic disorders and CKD progression. Here, we determined the impact of WD on AA-induced kidney injury. Five-week-old male C57BL/6J mice were fed WD or normal chow (NC) for 8 wk, followed by administration of AA every 3 days for 3 wk. Measurements were performed after the last injection and following a 3-wk recovery. Independent of dosing AA by body weight (3 mg/kg/day) or same dose/mouse (0.1125 mg/day), the AA-induced increase in plasma creatinine and reduction of hematocrit were greater in WD versus NC. This was associated with increased kidney gene expression in WD vs. NC of markers of DNA damage (p21), injury (Kim1 and Ngal), and inflammation (Tnfa) and kidney fibrosis staining. WD alone increased fractional excretion of indoxyl sulfate by 7.5-fold, indicating enhanced kidney organic anion transport. Kidney proteomics identified further WD-induced changes that could increase kidney sensitivity to AA and contribute to the altered response to AA including weakening of energy metabolism, potentiation of immune and infection pathways, and disruption in RNA regulation. In conclusion, WD can increase the susceptibility of mice to Balkan nephropathy, possibly in part through facilitating kidney uptake of the organic anion AA. This study shows that a Western diet (WD) aggravates a murine model of Balkan nephropathy induced by the application of the organic anion and nephrotoxin aristolochic acid (AA). Mechanistically, this may involve WD-induced kidney organic anion secretion, which can facilitate the AA uptake into proximal tubular cells and thereby contribute to the injury. Kidney proteomics identified further changes induced by feeding a WD that could have increased the sensitivity of the kidney to stress and injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00185.2024DOI Listing

Publication Analysis

Top Keywords

organic anion
20
balkan nephropathy
16
western diet
12
kidney
11
murine model
8
model balkan
8
aristolochic acid
8
anion transport
8
dna damage
8
kidney organic
8

Similar Publications

For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.

View Article and Find Full Text PDF

Boosting peroxymonosulfate activation for complete removal of gatifloxacin by a bead-chain zeolitic imidazolate framework composite.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. Electronic address:

A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO) nanowires. The prepared catalyst MnO@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased.

View Article and Find Full Text PDF

SLC17A3 localized to the apical membrane of the renal proximal tubules has been implicated in the urinary excretion of drugs and endogenous/exogenous metabolites transported into the tubules by OAT1 and OAT3. Because SLC17A3 mediates the facilitated diffusion of organic anions, which requires a sensitive and rapid assay, no system has been established to evaluate its transport activity in mammalian cells. In this study, we demonstrated that the exposure of cells expressing click beetle luciferase (bLuc) and SLC17A3 to D-luciferin produces marked bioluminescence, which enables the evaluation of SLC17A3 function.

View Article and Find Full Text PDF

The development and validation of an accurate, selective, and eco-friendly capillary zone electrophoretic detection (CZE) method has been presented for concurrent measurement of inorganic and organic anions including chloride, sulfate, formic acid, citric acid, acetic acid, phosphate, and glutamic acid in Human Milk Oligosaccharides (HMOs) for the first time. An electrolyte composed of an aqueous solution of benzoic acid, 16.38 mM; l-histidine, 24.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!