In this study, we investigate the atomic layer deposition (ALD) process on all-inorganic CsPbBr perovskite nanocrystals (PNCs) to introduce an inorganic electron transport layer (ETL) in light-emitting diode (LED) devices. Two types of CsPbBr PNCs were synthesized with oleate (OA) and oleylammonium (OLA) ligands on the surface. We found that CsPbBr PNCs with Cs oleate surfaces experienced severe photoluminescence (PL) quenching after the ALD process, while those with oleylammonium bromide surfaces did not show any significant PL drop. Transmission electron microscopy and X-ray photoelectron spectroscopy revealed that significant Pb metal formation and Ruddlesden-Popper planar faults, linked to uncoordinated Pb ion defects, were generated in CsPbBr PNCs terminated with Cs oleate after ALD ZnO. Finally, we fabricated LEDs using PNCs with an ALD ZnO process to introduce inorganic ZnMgO nanoparticles as the ETL. The devices processed with ALD exhibited superior luminance and external quantum efficiency compared to those without the ALD process. This research provides crucial insights into the surface-dependent chemistry of PNCs and the surface-dependent performance of perovskite-based optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02737DOI Listing

Publication Analysis

Top Keywords

ald process
12
cspbbr pncs
12
atomic layer
8
layer deposition
8
cspbbr perovskite
8
perovskite nanocrystals
8
introduce inorganic
8
ald zno
8
ald
6
pncs
6

Similar Publications

Data generated using single-cell RNA-sequencing has the potential to transform understanding of the cerebral circulation and advance clinical care. However, the high volume of data, sometimes generated and presented without proper pathophysiological context, can be difficult to interpret and integrate into current understanding of the cerebral circulation and its disorders. Furthermore, heterogeneity in the representation of brain regions and vascular segments makes it difficult to compare results across studies.

View Article and Find Full Text PDF

Nanostructure fabrication by area selective deposition: a brief review.

Mater Horiz

January 2025

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

In recent years, area-selective deposition (ASD) processes have attracted increasing interest in both academia and industry due to their bottom-up nature, which can simplify current fabrication processes with improved process accuracy. Hence, more research is being conducted to both expand the toolbox of ASD processes to fabricate nanostructured materials and to understand the underlying mechanisms that impact selectivity. This article provides an overview of current developments in ASD processes, beginning with an introduction to various approaches to achieve ASD and the factors that affect selectivity between growth and non-growth surfaces, using area-selective atomic layer deposition (AS-ALD) as the main model system.

View Article and Find Full Text PDF

Subnano AlO Coatings for Kinetics and Stability Optimization of LiNiCoMnO via O-Based Atomic Layer Deposition.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.

View Article and Find Full Text PDF

Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.

View Article and Find Full Text PDF

Acetylation of proximal cysteine-lysine pairs by alcohol metabolism.

Redox Biol

December 2024

Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:

Alcohol consumption induces hepatocyte damage through complex processes involving oxidative stress and disrupted metabolism. These factors alter proteomic and epigenetic marks, including alcohol-induced protein acetylation, which is a key post-translational modification (PTM) that regulates hepatic metabolism and is associated with the pathogenesis of alcohol-associated liver disease (ALD). Recent evidence suggests lysine acetylation occurs when a proximal cysteine residue is within ∼15 Å of a lysine residue, referred to as a cysteine-lysine (Cys-Lys) pair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!