AI Article Synopsis

  • The study investigates how the timing of hibernation affects retinal damage in 13-lined ground squirrels after injecting them with adenosine triphosphate (ATP).
  • Eighteen squirrels were divided into three groups based on the season (early, mid, late) and underwent imaging before and after ATP injection to assess retinal health.
  • Results indicated that early-season squirrels were more likely to suffer retinal damage, and further research is suggested to refine ATP dosing based on seasonal ocular changes.

Article Abstract

Purpose: To examine whether time of year (relative to hibernation emergence) influences the retinal degenerative effects of intravitreal injection of adenosine triphosphate (ATP) in the 13-lined ground squirrel (13-LGS).

Methods: Eighteen (9 male, 9 female) 13-LGS in three experimental cohorts (early season, mid-season, late season) (n = 6 each) underwent baseline imaging using scanning light ophthalmoscopy (SLO) and optical coherence tomography (OCT). Animals then received a 10-µL intravitreal injection of 0.723 M ATP, followed by OCT and SLO imaging at 3, 10, and 21 days. Adaptive optics SLO (AOSLO) was performed in animals without retinal damage after the 21-day follow-up. Retinal thickness, choroidal thickness, and cone density measures were compared to values from wild-type controls (n = 12).

Results: Five animals (four early season, one late season) showed retinal damage post-ATP injection (Fisher's exact test, P = 0.065). Animals with retinal damage displayed areas of disrupted retinal lamination on OCT. Any changes in OCT thickness were generally present on initial follow-up and resolved at later time points. Follow-up imaging with AOSLO on animals without retinal damage showed no significant differences in the cone mosaic topography from control eyes. Axial length was increased in mid-/late-season cohorts relative to early season (P = 0.0025 and P = 0.0007).

Conclusions: In this pilot study, the 13-LGS appears more susceptible to ATP-induced retinal damage during the early season. Future studies adjusting dose based on ocular biometry may help elucidate the impact of time of year on chemical response.

Translational Relevance: Consideration of ocular biometry in this and other animal models is merited when using intravitreal methods of chemical administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547255PMC
http://dx.doi.org/10.1167/tvst.13.11.5DOI Listing

Publication Analysis

Top Keywords

retinal damage
24
early season
16
animals retinal
12
retinal
9
atp-induced retinal
8
13-lined ground
8
ground squirrel
8
time year
8
intravitreal injection
8
late season
8

Similar Publications

Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy.

Pharmacol Res

December 2024

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education. Electronic address:

Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.

View Article and Find Full Text PDF

Peripapillary pachychoroid syndrome (PPS) is a recently described condition, classified within the pachychoroid disease spectrum characterized by focal or diffuse thickening of the choroid due to dilation of choroidal vessels in the Haller's layer (pachyvessels), thinning of the choriocapillaris and the Sattler's layer, and accompanied by increased choroidal permeability and damage to the retinal pigment epithelium. Unlike other pachychoroid diseases that involve changes in the central retina, PPS presents with choroidal thickening and intra- or subretinal fluid located nasally in the macular region, near the optic disc. This review aims to summarize and analyze current data on the clinical features, pathogenesis, and treatment options for PPS found in the literature.

View Article and Find Full Text PDF

Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored.

View Article and Find Full Text PDF

Innovative Polymeric Biomaterials for Intraocular Lenses in Cataract Surgery.

J Funct Biomater

December 2024

Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada.

Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality.

View Article and Find Full Text PDF

Relationship Between Short-Term Blood Pressure Variability and Choroidal-Retinal Thicknesses Assessed by Optical Coherence Tomography in Hypertensive Subjects.

J Pers Med

November 2024

Unit of Nephrology and Dialysis, Hypertension Excellence Centre, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Università di Palermo, 90128 Palermo, Italy.

The complications of hypertension depend not only on the mean blood pressure (BP) but also on its variability (BPV). Recent studies suggest that the choroid may serve as an indicator of systemic vascular damage. These studies have been made possible by the increased availability of optical coherence tomography (OCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!