A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing carrying plasmid-mediated AmpC β-lactamases to optimize detection in a diagnostic laboratory setting. | LitMetric

Plasmid-mediated AmpC β-lactamases are a cause of acquired cephalosporin resistance in Gram-negative bacteria. However, consensus regarding the optimal detection method is yet to be achieved and varies depending on local epidemiology and laboratory capacity. We determined the acquired genotypic resistance mechanisms of 250 isolates with a positive AmpC screen, defined as cefoxitin MIC ≥ 8 mg/L and a positive AmpC double- disc diffusion test, using in-house designed high-resolution melt PCR, detecting plasmid-acquired genes from the CIT and DHA families. A proportion of these isolates ( = 170, 68%) underwent further genotypic characterization using whole- genome sequencing (WGS). Of 250 isolates with a positive screening test, 72 (28.8%) were determined to carry an acquired AmpC gene. There was 100% concordance between PCR and WGS in the identification of acquired AmpC genes. The phenotypic criteria were then assessed to determine their utility in predicting acquired AmpC gene carriage. Criteria 1 (cefoxitin MIC > 8 mg/L plus ceftriaxone MIC > 1 mg/L and/or ceftazidime MIC > 1 mg/L) yielded a sensitivity of 93.1% and a specificity of 47.8%. Criteria 2 (cefoxitin MIC > 16 mg/L plus ceftriaxone MIC > 4 mg/L) had a sensitivity of 33.3% and a specificity of 98.9%. DHA genes, whose expression may be induced following antibiotic exposure, were present in 19% of isolates testing susceptible to ceftriaxone (MIC ≤ 1 mg/L) and were significantly more likely than CIT genes to be detected in susceptible isolates ( < 0.0001). These findings highlight the importance of using genotypic methods to detect acquired AmpC resistance in isolates that meet phenotypic screening criteria.IMPORTANCEDetection of transmissible AmpC resistance remains a challenging problem for diagnostic laboratories, especially in where the expression of its intrinsic AmpC gene can result in phenotypic resistance patterns indistinguishable from plasmid-mediated resistance. In conjunction with whole- genome sequencing (WGS), we describe the development and performance of a novel melt-curve PCR to identify the two most prevalent plasmid-mediated AmpC gene families: CIT and DHA. We then describe phenotypic testing algorithms that incorporate this PCR and can differentiate these from non-acquired resistance in . It is important to distinguish these, not only to spare patients from unnecessarily being treated with infection control precautions, but also to identify plasmid-mediated genes, especially of the DHA family, that have been associated with inducible drug resistance to third- generation cephalosporins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619294PMC
http://dx.doi.org/10.1128/spectrum.00933-24DOI Listing

Publication Analysis

Top Keywords

mic mg/l
20
acquired ampc
16
ampc gene
16
plasmid-mediated ampc
12
cefoxitin mic
12
ceftriaxone mic
12
ampc
11
ampc β-lactamases
8
resistance
8
250 isolates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!