A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Examination of respiratory syncytial virus fusion protein proteolytic processing and roles of the P27 domain. | LitMetric

The respiratory syncytial virus (RSV) fusion protein (F) facilitates virus-cell membrane fusion, which is critical for viral entry, and cell-cell fusion. In contrast to many type I fusion proteins, RSV F must be proteolytically cleaved at two distinct sites to be fusogenic. Cleavage at both sites results in the release of a 27 amino-acid fragment, termed Pep27. We examined proteolytic processing and the role of Pep27 for RSV F from both RSV A2 and RSV B9320 laboratory-adapted strains, allowing important comparisons between A and B clade F proteins. F from both clades was cleaved at both sites, and pulse-chase analysis indicated that cleavage at both sites occurs early after synthesis, most likely within the secretory pathway. Mutation of either site to alter the furin recognition motif blocked cell-cell fusion activity. To assess the role of Pep27 in F processing and expression, we deleted the Pep27 fragment, but preserved the cleavage sites. Deletion of Pep27 reduced F surface expression and cell-cell fusion. Two conserved N-linked glycosylation sites within Pep 27 are present in both the RSV A2 and RSV B9320 F. Randomization of the Pep27 sequence, while conserving the two N-liked glycosylation sites, did not significantly change surface expression, and only modestly reduced cell-cell fusion. However, the disruption of either Pep27 glycosylation site reduced cell-cell fusion. This work clarifies the timing of RSV F proteolytic cleavage and offers insight into the crucial role the N-linked glycosylation sites within Pep27 play in the biological function of F.

Download full-text PDF

Source
http://dx.doi.org/10.1128/jvi.01639-24DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650970PMC

Publication Analysis

Top Keywords

cell-cell fusion
20
cleavage sites
12
rsv rsv
12
glycosylation sites
12
fusion
9
respiratory syncytial
8
syncytial virus
8
fusion protein
8
proteolytic processing
8
rsv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!