A racemic mixture of -Fmoc-protected phenylalanine (2) or tryptophan (3) was found to spontaneously afford a gel enriched in either the L- or the D-form of their enantiomers stochastically. Homochiral selective secondary nucleation, promoted by the choice of solvent or stirring, was suggested as the key process for the observed phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr04011bDOI Listing

Publication Analysis

Top Keywords

homochiral selective
8
selective secondary
8
secondary nucleation
8
nucleation promoted
8
promoted choice
8
choice solvent
8
solvent stirring
8
macroscopic chiral
4
chiral symmetry
4
symmetry breaking
4

Similar Publications

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

Agent-based simulations are set to describe the early biotic selection of oligomers made of monomers of different chirality. The simulations consider the spatial distribution of agents and resources, the balance of biomass of different chirality, and the balance of chemical energy. Following the well-known Wald's hypothesis, a disadvantage is attributed to the change in chirality along the biochemical sequence.

View Article and Find Full Text PDF

Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.

View Article and Find Full Text PDF

Programmable Modular Assembly of Homochiral Ir(III)-Metallohelices to Reverse Metallodrug Resistance by Inhibiting CDK1.

Angew Chem Int Ed Engl

December 2024

Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China Institution.

Drug resistance is a major cause of cancer recurrence and poor prognosis. The innovative design and synthesis of inhibitors to target drug-resistance-specific proteins is highly desirable. However, challenges remain in precisely adjusting their conformation and stereochemistry to adapt the chiral regions of target proteins.

View Article and Find Full Text PDF

Amplifying and Reversing the Chiral Bias in Asymmetric Photo-Polymerization Reaction.

Adv Sci (Weinh)

December 2024

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Circularly polarized light (CPL) is inherently chiral and is regarded as one possible source for the origin of homochirality. Coincidentally, chiral metal nanoparticles have great prospects in asymmetric photochemical reactions since they can enhance the chiral light-matter interactions. Nonetheless, little is known about how the spin angular momentum of light competes with the chiral electromagnetic field in the vicinity of a chiral nanoparticle during the chiral induction and amplification process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!