Push-pull fluorophores with donor-π-acceptor architectures are attractive scaffolds for the design of probes and labels for two-photon microscopy. Such fluorophores undergo a significant charge-delocalization in the excited state, which is essential for achieving a large two-photon absorption cross-section and brightness. The polarized excited state may, however, also facilitate excited-state proton transfer (ESPT) pathways that can interfere with the probe response. Herein, we employed steady-state and time-resolved spectroscopic studies to elucidate whether ESPT is responsible for the pH-dependent emission response of the Zn(II)-selective fluorescent probe chromis-1. Composed of a push-pull architecture with a pyridine ring as the acceptor, the chromis-1 fluorophore core acts as a photobase that promotes ESPT upon acidification. Although the p of the pyridine acceptor increases more than six orders of magnitude upon excitation, the photobasicity is not sufficient to deprotonate solvent water molecules under neutral conditions. Rather, the pH-dependent emission response is caused by the pendant bis-isonicotinic acid chelating group which upon protonation facilitates an excited-state intramolecular proton transfer to the pyridine acceptor. A simple permutation of the core pyridine nitrogen from the para- to the ortho-position relative to the thiazole substituent was sufficient to reduce the excited-state basicity by two orders of magnitude without compromising the two-photon excited brightness. These results highlight the importance of choosing the appropriate fluorophore core and chelating moiety for minimizing pH-dependent responses in the design of fluorescent probes for biological imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586903 | PMC |
http://dx.doi.org/10.1021/acs.jpca.4c05649 | DOI Listing |
J Phys Chem C Nanomater Interfaces
December 2024
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands.
Understanding the electrolyte factors governing the electrochemical CO reduction reaction (CORR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CORR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CORR activity and selectivity.
View Article and Find Full Text PDFInorg Chem
December 2024
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
Polyoxometalates (POMs) have good potential for applications in different fields, including conducting materials, optics, and electrocatalysis. Of particular significance is the synthesis and development of addendum POMs. Molybdenum-oxo clusters, which are renowned for their diverse structures and electronic properties, were utilized to facilitate the synthesis of innovative materials.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
The electrochemical nitrate reduction reaction (NORR) involves multiple hydrogenation and deoxygenation steps, which compete with the hydrogen evolution reaction (HER). Therefore, NORR driven in acidic media is challenging in spite of advantageous fast hydrogen transfers in its elementary steps. The findings presented in this article first demonstrate that the NORR is significantly activated even in acidic lithium nitrate solutions at LiNO concentrations exceeding 6 m on a Pt electrode (the highly effective catalyst for HER) by the formation of a "hydronium-in-salt" electrolyte (HISE), a new type of aqueous high concentration salt electrolyte.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Qingdao University of Science and Technology, State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao, CHINA.
Electrocatalytic reduction of NO3- is a green and sustainable method that not only helps to treat industrial pollutants in wastewater, but also produces valuable chemicals. However, the slow dynamics of the proton-coupled electron transfer process results in a high barrier and low conversion efficiency. In this work, the Se-deficient FeSe2/Fe3O4 heterojunction was synthesized, which showed excellent electrochemical performance in 0.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Department of Chemistry, University of Toronto, Canada.
Proton transfer reaction mass spectrometry (PTR-MS) is often employed to characterize gas-phase compounds in both indoor and outdoor environments. PTR-MS measurements are usually made without upstream chromatographic separation, so it can be challenging to differentiate between an ion of interest, its isomers, and fragmentation products from other species all detected at the same mass-to-charge ratio. These isomeric contributions and fragmentation interferences can confound the determination of accurate compound mixing ratios, the assignment of accurate chemical properties, and corresponding analyses of chemical fate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!