AI Article Synopsis

  • Natural killer (NK) cells play a crucial role in managing both viral infections and immune responses during kidney transplants in children, as shown in a study using data from the CTOTC project.
  • The study analyzed NK cell phenotypes in 98 pediatric kidney transplant patients and found specific NK cell traits linked to either viral infections or alloimmune events, such as acute rejection.
  • These findings suggest that understanding NK cell profiles could help distinguish between risk factors for infections versus those for immune responses after transplantation.

Article Abstract

Background: Natural killer (NK) cells have gained recognition for playing an integral role in both alloimmunity and protective immunity, particularly viral infection control, in solid organ transplantation. Using data from the Clinical Trials in Organ Transplantation in Children (CTOTC) study entitled, "Immune Development in Pediatric Transplantation," (NCT00951353), we aimed to identify NK cell phenotypes that were associated with viral infection versus alloreactive events during the first year after transplantation. We also examined the relationship between NK cells with 7-year patient and allograft survival using the Scientific Registry for Transplant Recipients (SRTR) database.

Methods: A secondary analysis of peripheral blood mononuclear cells from 98 children aged 1-20 years old with kidney transplants was conducted using multiparameter flow cytometry for the following NK cell phenotypes: CD56, CD56, and CD56. We associated these phenotypes with either viral infection or alloimmunity (de novo donor-specific antibody (dnDSA) development or acute rejection), using Fine-Gray subdistribution hazard models for competing risks. Secondary outcomes included allograft and patient survival.

Results: We demonstrated that specific baseline NK cell phenotypes obtained prior to transplantation may be associated with either viral infection or alloimmunity. An elevation in CD56 frequency was associated with an increased risk of infection, while an increase in CD56 absolute count was associated with an increased risk of an alloimmune event. NK cells were not associated with graft survival.

Conclusions: NK cell phenotyping may be a useful tool to help differentiate infectious from alloimmune risk.

Download full-text PDF

Source
http://dx.doi.org/10.1111/petr.14877DOI Listing

Publication Analysis

Top Keywords

cell phenotypes
16
viral infection
16
natural killer
8
organ transplantation
8
associated viral
8
cd56 cd56
8
infection alloimmunity
8
associated increased
8
increased risk
8
associated
6

Similar Publications

Introduction: Asthma is a complex condition characterized by airway inflammation. Interleukin-6 (IL-6) plays a significant role in asthma pathogenesis through its effects on T cells and its association with pro-inflammatory responses. Both lung and circulating IL-6 levels are elevated in asthma.

View Article and Find Full Text PDF

Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities.

Cell Mol Neurobiol

December 2024

Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.

Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence.

Methods Mol Biol

December 2024

Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.

Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.

View Article and Find Full Text PDF

Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons.

Mol Neurobiol

December 2024

Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.

Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!