TrkB and TrkC are quite common neurotrophin receptors found on the same cells in CNS. In the C-terminal tail, TrkB and TrkC differ only in two amino acid residues at positions immediately preceding the tyrosine residue, which, upon phosphorylation, becomes the docking site for phospholipase Cγ1 (PLCγ1). The question arose whether such a difference near the PLCγ1 docking site might contribute to differential response to neurotrophin. PC12 clones with the following receptors were obtained: wild-type TrkC, TrkC-Y820F with a defective PLCγ1 binding site, TrkC-T817S-I819V with two amino acid residues replaced with those in the TrkB tail. The outgrowth of neurite-like processes from TrkC-Y820F-containing cells appeared to be impaired, while the TrkC-T817S-I819V variant appeared more effective than wild-type TrkC in promoting the outgrowth of neurite-like processes after neurotrophin stimulation, at least in the compared PC12 cell clones. Taken together, both the tyrosine residue at the PLCγ1 docking site and the amino acid residues immediately preceding it appear important for TrkC-supported outgrowth of neurite-like processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538612PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101853DOI Listing

Publication Analysis

Top Keywords

outgrowth neurite-like
16
neurite-like processes
16
amino acid
12
acid residues
12
docking site
12
c-terminal tail
8
trkb trkc
8
tyrosine residue
8
plcγ1 docking
8
wild-type trkc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!