AI Article Synopsis

  • Rice is a vital food source for over 50% of the global population, but its high glycemic index poses challenges for diabetic and obese individuals, necessitating the development of low-GI rice varieties through understanding starch biogenesis.
  • A study of 200 rice genotypes focused on starch content and categorized them into three groups based on amylose content, leading to the selection of specific genotypes for further analysis of resistant starch levels, protein content, and fatty acid profiles.
  • Results showed varying levels of resistant starch and fatty acids, with specific genotypes demonstrating significant enzymatic activity related to starch biosynthesis, highlighting genetic variations that can influence rice quality traits.

Article Abstract

Introduction: Rice is a primary food source almost for more than 50% of the total world's population. Glycemic index (GI) is high in most of the rice varieties, limiting their consumption by diabetic and obese people. As a result, developing new rice varieties with low GI necessitates a thorough understanding of starch biogenesis gene expression and its interrelationship.

Methods: A total 200 rice genotypes were analyzed for total starch content (TSC), amylopectin content (APC), and amylose content (AC). The clustering of these rice genotypes was done based on their AC. Further, these genotypes were categorized into three groups up to 10% amylose-low, 10-26% amylose-medium, and more than 26% amylose-high. Among them, six genotypes 1 from low AC (NJ-72), 2 from medium AC (UPRI-2003-18, PRR-126), and 3 from high AC (RNRM-7, Urvashi and Ananga) were selected. The genotypes selected from the medium and high AC groups were having 2% amylose variation among themselves respectively and they were further used to study the level of RS, protein content (PC), fatty acid (FA) profiles, and granule morphology along with low group sample.

Results: Resistant starch (RS) content ranged from 0.33-2.75%, and fatty acid profiling revealed high levels of palmitic, linoleic, and oleic acids. The degree of crystallinity and APC% were found to be positively correlated. Ananga, the genotype with the highest RS, displayed compact starch granules. Further, NJ-72 showing low RS and Ananga with high RS were selected for investigation of enzymatic activities of starch biosynthesis, metabolites accumulation, and expressions of 20 starch biogenesis genes in developing endosperm. Starch branching enzymes (SBE) and starch synthase (SS) activities peaked at 13 days after anthesis (DAA), while starch debranching enzymes (DBE) were most active at 18 DAA. In Ananga, TSC, AC, APC, and RS levels progressively increased from 3 to 23 DAA. Ananga showed 1.25-fold upregulation of at 18DAA. Higher expressions of and were observed in NJ-72 at 13DAA. was predominantly expressed followed by . GBSSI was positively correlated with both AC and RS while , and were positively related to APC.

Conclusion: This research could lead to the development of rice varieties with improved nutritional qualities, such as higher RS content, which is beneficial for human health due to its role in lowering glycemic response and promoting gut health. Additionally, the study provides insights into how the modulation of key genes and enzymes can affect starch composition, offering strategies to breed rice varieties tailored for specific dietary needs or industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538003PMC
http://dx.doi.org/10.3389/fnut.2024.1448450DOI Listing

Publication Analysis

Top Keywords

rice varieties
16
starch
11
rice
8
starch biogenesis
8
rice genotypes
8
starch content
8
fatty acid
8
positively correlated
8
daa ananga
8
content
6

Similar Publications

X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.

View Article and Find Full Text PDF

Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health.

View Article and Find Full Text PDF

Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen responsible for bacterial leaf blight (BLB) in rice, which can result in significant yield losses of up to 70%. A study evaluated the spread of Xoo in rice fields using environmental samples and employed colorimetric loop-mediated amplification (cLAMP) and PCR for detection.

View Article and Find Full Text PDF

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

Since the inception of hybrid rice technology 50 years ago, it has not only substantially increased rice yield per unit area but also expedited the development of high-quality rice varieties. However, the evolutionary characteristics of hybrid rice quality remain unclear. To address this gap, it is imperative to leverage more representative and comprehensive hybrid rice resources to analyze phenotypic variation diversity and its primary genetic basis, thereby offering more efficient guidance for molecular breeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!