A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Homology-based identification and structural analysis of Annexins and Serine proteases to search molecules for wound healing applications. | LitMetric

Homology-based identification and structural analysis of Annexins and Serine proteases to search molecules for wound healing applications.

Comput Struct Biotechnol J

Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires B1876, Argentina.

Published: December 2024

Chronic wounds and burns are a worldwide healthcare problem that erodes patients' well-being and healthcare systems. This silent and costly epidemic requires new, cost-efficient solutions to improve patients' physical and economic welfare. Eschar-degrading vegetal and bacterial proteases have been utilized as a solution. However, these proteins are evolutionarily far from those present in human wound healing. Serine protease (SP) and annexin (ANX) proteins interact within the skin healing process. A homology-based identification pipeline can help in discovering selective human SP and ANX analogs in the epithelial tissue of the fast-healing species, . In the present work, we found 14 candidates for RT-PCR in using homology inference. The genetically detected candidates were then structurally and sequentially analyzed to understand their possible relation to SPs and ANXs involved in human wound healing. A total of six TBLASTN/BLASTX candidates (four SPs and two ANXs) were detected in skin. Structural analysis revealed that all SP candidates resembled human KLK4, KLK5, KLK6, and KLK8, whereas all ANX only resembled human ANXA4. Structure and sequence analysis revealed high conservation of ANX Ca binding sites (GDXD) and SP catalytic triad (HDS) motifs. In addition, structural analysis revealed that SP substrate selectivity position 186 was the main difference between human KLK5 and SPs. These findings may allow the proposal and testing of more selective formulations, broadening treatments beyond debridement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539086PMC
http://dx.doi.org/10.1016/j.csbj.2024.10.015DOI Listing

Publication Analysis

Top Keywords

structural analysis
12
wound healing
12
analysis revealed
12
homology-based identification
8
human wound
8
sps anxs
8
resembled human
8
human
6
identification structural
4
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!