Nanoparticle modification demonstrates a remarkable synergetic effect in combating bacteria, particularly resistant bacteria, enhancing their efficacy by simultaneously targeting multiple cellular pathways. This approach positions them as a potent solution against the growing challenge of antimicrobial-resistant (AMR) strains. This research presents an investigation into the synthesis, characterization, and antibacterial evaluation of silver-coordinated chloro-fullerenes nanoparticles (Ag-C-Cl) and copper-coordinated chloro-fullerenes nanoparticles (Cu-C-Cl). Utilizing an innovative, rapid one-step synthesis approach, the nanoparticles were rigorously characterized using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometer (SEM-EDS), High-Resolution Transmission Electron Microscopy (HR-TEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Raman spectroscopy. In conjunction with the analytical techniques, a computational approach was utilized to corroborate the findings from Raman spectroscopy as well as the surface potential of these nanoparticles. Moreover, the antibacterial activities of the synthesized nanoparticles were assessed against () and Methicillin-Resistant (MRSA). These findings demonstrated that the synthesized Ag-C-Cl and Cu-C-Cl nanoparticles exhibited minimum inhibitory concentrations (MIC) of 3.9 μg mL and 125 μg mL, respectively. Reactive oxygen species (ROS) quantification, catalase assay, and efflux pump inhibition results revealed promising broad-spectrum antibacterial effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533167PMC
http://dx.doi.org/10.1039/d4na00732hDOI Listing

Publication Analysis

Top Keywords

rapid one-step
8
one-step synthesis
8
chloro-fullerenes nanoparticles
8
raman spectroscopy
8
nanoparticles
7
synthesis silver
4
silver copper
4
copper coordinated
4
coordinated chlorine
4
chlorine functionalized
4

Similar Publications

Equipmentless point-of-care testing of dengue antibodies using ELISA and smartphones.

J Pharm Biomed Anal

January 2025

INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET-Santa Fe, RN 168, Santa Fe S3000GLN, Argentina. Electronic address:

Infections with the dengue virus affect more than 100 million people every year. The infected can present a mild form of the disease or a severe form, which can, eventually, lead to death. Dengue prevails in tropical and subtropical regions, although increased incidence has been observed in the last years in tempered climates.

View Article and Find Full Text PDF

Background: This is a multicentre, European, prospective trial evaluating the diagnostic accuracy of One Step Nucleic Acid Amplification (OSNA) compared to sentinel lymph nodes histopathological ultrastaging in endometrial cancer patients.

Methods: Centres with expertise in sentinel lymph node mapping in endometrial cancer patients in Europe will be invited to participate in the study. Participating units will be trained on the correct usage of the OSNA RD-210 analyser and nucleic acid amplification reagent kit LYNOAMP CK19 E for rapid detection of metastatic nodal involvement, based on the cytokeratin 19 (CK19) mRNA detection.

View Article and Find Full Text PDF

Metal synergy can enhance the catalytic performance, and a prefabricated solid precursor can guide the ordered embedding, of secondary metal source ions for the rapid synthesis of bimetallic organic frameworks (MM'-MOFs) with a stoichiometric ratio of 1:1. In this paper, containing well-defined binding sites was synthesized by mechanical ball milling, which was used as a template for the induced introduction of Fe ions to successfully assemble the ordered bimetallic (where denotes template-directed synthesis of MOF-74). Its electrocatalytic performance is superior to that of the conventional one-step-synthesized (where denotes one-step synthesis of MOF-74), and the ratio of the two metal sources, Co and Fe, is close to 1:1.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Introduction: f. sp. (Fol) is one of the most devastating plant pathogenic fungi, the causal agent of root rot for tractylides macrocephala Koidz (AMK).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!