In this research, sodium chloride-added calcium sulfate-hydroxyapatite composite bone cements (0.70CaS-0.30HAP)/NaCl were studied. Different wt% of NaCl (0, 1.5, and 2.5) were added to 0.70CaS-0.30HAP bone cement to investigate the setting time, injectability, washout resistance, phase evolution, physical properties, water absorption, microstructural, chemical analysis, mechanical strength, statistical analysis, apatite-forming ability, and cytotoxicity. With increasing NaCl, the initial setting time decreased to around 3.18 min. X-ray pattern revealed that all composite bone cement samples had mixed phases of CaS, HAP, brushite, gypsum, and NaCl. Water absorption and average grain size increased with increasing NaCl content. The densification and mechanical performances, including , , and values, slightly decreased with increasing NaCl content, correlated with the increasing porosity value. This resulted in the production of a porous structure, which caused an excellent apatite-forming ability. The = 2.5 sample showed good bioactivity, inducing the highest apatite mineralization ability in the SBF solution. Additionally, cell culture analysis showed above 94.12% cell viability against a high concentration (@ 200 μg mL) for the = 2.5 sample, revealing cytocompatibility. The obtained results indicated that the (0.70CaS-0.30HAP)/2.5NaCl composite bone cement, with good injectability, bioactivity, and cytocompatibility, are promising candidates for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538968 | PMC |
http://dx.doi.org/10.1039/d4ra06034b | DOI Listing |
J Stomatol Oral Maxillofac Surg
January 2025
Center for Oral and Maxillofacial Surgery, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria. Electronic address:
Precise volumetric measurement of newly formed bone after maxillary sinus floor augmentation (MSFA) can help clinicians in planning for dental implants. This study aimed to introduce a novel modular framework to facilitate volumetric calculations based on manually drawn segmentations of user-defined areas of interest on cone-beam computed tomography (CBCT) images MATERIAL & METHODS: Two interconnected networks for manual segmentation of a defined volume of interest and dental implant volume calculation, respectively, were used in parallel. The volume data of dental implant manufacturers were used for reference.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia. Electronic address:
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, Center of Translational Oral Research (TOR), Bergen, Bergen, 5020, NORWAY.
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!