A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heatmap analysis for artificial intelligence explainability in diabetic retinopathy detection: illuminating the rationale of deep learning decisions. | LitMetric

AI Article Synopsis

  • The study investigated how slight differences in retinal images from the same diabetic patients affect AI decision-making, specifically focusing on diabetic retinopathy detection using deep learning algorithms.
  • By analyzing heatmaps generated from these images, researchers found significant discrepancies in algorithm outputs for some pairs, highlighting the potential for enhanced explainability in AI decisions.
  • The results demonstrated high accuracy for the AI in detecting diabetic retinopathy (89.8% sensitivity, 96.3% specificity), supporting the use of heatmaps to improve understanding and trust in AI systems in healthcare.

Article Abstract

Background: The opaqueness of artificial intelligence (AI) algorithms decision processes limit their application in healthcare. Our objective was to explore discrepancies in heatmaps originated from slightly different retinal images from the same eyes of individuals with diabetes, to gain insights into the deep learning (DL) decision process.

Methods: Pairs of retinal images from the same eyes of individuals with diabetes, composed of images obtained before and after pupil dilation, underwent automatic analysis by a convolutional neural network for the presence of diabetic retinopathy (DR), output being a score ranging from 0 to 1. Gradient-based Class Activation Maps (GradCam) allowed visualization of activated areas. Pairs of images with discordant DL scores or outputs within the pair were objectively compared to the concordant pairs, regarding the sum of activations of Class Activation Mapping (CAM), the number of activated areas, and DL score differences. Heatmaps of discordant pairs were also qualitatively assessed.

Results: Algorithmic performance for the detection of DR attained 89.8% sensitivity, 96.3% specificity and area under the receiver operating characteristic (ROC) curve of 0.95. Out of 210 comparable pairs of images, 20 eyes and 10 eyes were considered discordant according to DL score difference and regarding DL output, respectively. Comparison of concordant versus discordant groups showed statistically significant differences for all objective variables. Qualitative analysis pointed to subtle differences in image quality within discordant pairs.

Conclusions: The successfully established relationship among objective parameters extracted from heatmaps and DL output discrepancies reinforces the role of heatmaps for DL explainability, fostering acceptance of DL systems for clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534741PMC
http://dx.doi.org/10.21037/atm-24-73DOI Listing

Publication Analysis

Top Keywords

images eyes
12
artificial intelligence
8
diabetic retinopathy
8
deep learning
8
retinal images
8
eyes individuals
8
individuals diabetes
8
class activation
8
activated areas
8
pairs images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: