MicroRNA-141-3p plays a detrimental role in the pathology of ischemic stroke, presenting a new target for stroke treatment. This study introduces and validates a novel class of peptide nucleic acid (PNA)-based miR-141-3p inhibitors known as serine gamma PNA-141 (sγPNA-141) for ischemic stroke treatment. After synthesis, physicochemical characterization, and nanoparticle encapsulation of sγPNA-141, we compared its safety and efficacy with traditional phosphorothioate- and regular PNA-based anti-miR-141-3p (PNA-141) , followed by detailed and efficacy testing of sγPNA-141 for treating ischemic stroke using a mouse model. sγPNA-141 demonstrated higher affinity and specificity toward miR-141-3p, and when applied post-stroke, demonstrated decreased brain damage, enhanced neuroprotective proteins, reduced tissue atrophy, swift improvement in functional deficits, and improvement in learning and memory during long-term recovery. Overall, our data show sγPNA-141 has neuroprotective and neuro-rehabilitative effects during stroke recovery. Furthermore, we demonstrated sγPNA-141's effects are mediated by the TGF-β-SMAD2/3 pathway. In summary, the present findings suggest that sγPNA-141 could be a potentially novel and effective therapeutic modality for the treatment of ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539414 | PMC |
http://dx.doi.org/10.1016/j.omtn.2024.102355 | DOI Listing |
BMC Complement Med Ther
January 2025
Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Background: Suhexiang (SHX) pill is widely used for treating acute ischemic stroke (AIS). Experimental and randomized controlled trials suggested that SHX pill was beneficial for patients with AIS. However, the effectiveness of SHX pill in real-world practice setting remains unclear.
View Article and Find Full Text PDFBMC Neurol
January 2025
Neurological Disorder Center, Department of Cerebrovascular Disease, Suining Central Hospital, Sichuan, 629000, China.
Background: Hyponatremia (< 135 mmol/L) is the most common electrolyte disturbance in patients with stroke. However, few studies have reported the relationship between hyponatremia at admission and outcomes in patients with acute ischemic stroke (AIS) treated with mechanical thrombectomy (MT). This study is aimed to explore the association between hyponatremia and clinical outcomes following MT.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow 226003, India. Electronic address:
Sustained activation of the SIRT3-NLRP3 inflammasome has been associated with worse outcomes after ischemic stroke. The objective of this study was to examine the potential mechanism by which the SIRT3-NLRP3 inflammasome affects neural stem and progenitor cells (NSPCs) after transient middle cerebral artery occlusion (tMCAO) in rats. Following tMCAO, significantly elevated levels of NLRP3, ASC, cleaved caspase 1, IL-1β, and IL-18 were observed in the ischemic subventricular zone.
View Article and Find Full Text PDFPediatr Neurol
January 2025
Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio.
Background: Telestroke assessments are widely used to remotely assess adults with suspected stroke, although they have not been studied in children. SPOT, the Study of Performing the PedNIHSS Over Televideo, tested the feasibility of assessing the Pediatric National Institutes of Health Stroke Scale (PedNIHSS) by televideo in children.
Methods: Children aged 2 to 17 years with and without strokes were recruited and examined in the outpatient neurology clinic.
Biomacromolecules
January 2025
School of Life Science, South China Normal University, Guangzhou 510631, China.
Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!