The receptive fields of motor neurons to a hind leg were mapped by recording intracellularly from their cell bodies or from the muscle fibers they innervate while stimulating mechanoreceptors on the surface of that leg. Each motor neuron is affected by a specific array of receptors that make up its receptive field. Boundaries along the anteroposterior or dorsoventral axes of the leg divide the receptive fields into excitatory and inhibitory regions. Proximodistal boundaries may correspond to the articulations between parts of the leg. Motor neurons that innervate antagonistic muscles have complementary receptive fields, so that the region that is excitatory for one is inhibitory for the other. The receptive fields of the motor neurons overlap. Tactile stimulation therefore leads to a specific local reflex that involves the coordinated movement of the segments of a leg. Five local reflexes are described, each of which moves the leg away from the site of stimulation. Afferents from the external mechanoreceptors do not synapse directly on the motor neurons, but instead on spiking local interneurons, some of which then synapse directly on motor neurons. These local interneurons have smaller receptive fields delineated by the same boundaries, so that the receptive fields of the motor neurons can be constructed from appropriate combinations of them. It is suggested that receptive fields are organized as "functional maps" that are appropriate for particular behavioral responses rather than solely to preserve or refine spatial information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568518PMC
http://dx.doi.org/10.1523/JNEUROSCI.06-02-00507.1986DOI Listing

Publication Analysis

Top Keywords

receptive fields
32
motor neurons
28
fields motor
16
receptive
9
motor
8
leg motor
8
excitatory inhibitory
8
synapse directly
8
directly motor
8
local interneurons
8

Similar Publications

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Drone inspections are widely utilized in the detection of insulators in power lines. To address issues with traditional object detection algorithms, such as large parameter counts, low detection accuracy, and high miss rates, this paper proposes an insulator detection algorithm based on an improved YOLOv5 model. Firstly, in the backbone and neck networks, a lightweight CSP-SCConv module is employed to replace the original CSP-Darknet53 module, thereby reducing the parameter count and enhancing the feature extraction capabilities.

View Article and Find Full Text PDF

In order to solve the problem of weak single domain generalization ability in existing crowd counting methods, this study proposes a new crowd counting framework called Multi-scale Attention and Hierarchy level Enhancement (MAHE). Firstly, the model can focus on both the detailed features and the macro information of structural position changes through the fusion of channel attention and spatial attention. Secondly, the addition of multi-head attention feature module facilitates the model's capacity to effectively capture complex dependency relationships between sequence elements.

View Article and Find Full Text PDF

Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware.

Nat Commun

January 2025

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy.

Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing bio-physically realistic dynamics of biological neural systems in real-time. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. By developing a recurrent spiking neural network model of the retinocortical visual pathway, we show how such noisy and heterogeneous computing substrate can produce linear receptive fields tuned to visual stimuli with specific orientations and spatial frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!