A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrative genomic analysis of RNA-modification-single nucleotide polymorphisms associated with kidney function. | LitMetric

Introduction: Increasing evidence suggests that RNA modification plays a significant role in the kidney and may be an ideal target for the treatment of kidney diseases. However, the specific mechanisms underlying RNA modifications in the pathogenesis of kidney disease remain unclear. Genome-wide association studies (GWAS) have identified numerous genetic loci involved in kidney function and RNA modifications. The identification and exploration of RNA modification-related single-nucleotide polymorphisms (RNAm-SNPs) associated with kidney function can help us to comprehensively understand the underlying mechanism of kidney disease and identify potential therapeutic targets.

Methods: First, we examined the association of RNAm-SNPs with eGFR. Second, we performed expression quantitative trait locus (eQTL) and protein quantitative trait locus (pQTL) analyses to explore the functions of the identified RNAm-SNPs. Finally, we evaluated the causality between RNAm-SNP-associated gene expression and circulating proteins and kidney function using a Mendelian randomization (MR) analysis.

Results: A total of 252 RNA m-SNPs related to mA, mA, A-to-I, mC, mG, and mU were identified. All these factors were significantly associated with the eGFR. A total of 119(47.22 %) RNAm-SNPs showed cis-eQTL effects in blood cells, whereas 72 (28.57 %) RNAm-SNPs showed cis-pQTL effects in plasma. 47 (18.65 %) RNAm-SNPs exhibited cis-eQTL and cis-pQTL effects. In addition, we demonstrated a causal association between RNAm-SNP-associated gene expression, circulating protein levels, and eGFR decline. Some of the identified genes and proteins have been reported to be associated with kidney diseases, such as CDK10 and SDCCAG8.

Conclusions: This study reveals an association between RNAm-SNPs and kidney function. These SNPs regulate gene expression and protein levels through RNA modifications, eventually leading to kidney dysfunction. Our study provides novel insights that connect the genetic risk of kidney disease to RNA modification and suggests potential therapeutic targets for the prevention and treatment of kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538735PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38815DOI Listing

Publication Analysis

Top Keywords

kidney function
20
kidney disease
16
kidney
13
associated kidney
12
rna modifications
12
gene expression
12
rna modification
8
treatment kidney
8
kidney diseases
8
potential therapeutic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!