The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers.

Biol Res

Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile.

Published: November 2024

Background: Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.

Results: In this study, we demonstrate that SVCT2 exhibits an intracellular distribution in chicken slow skeletal muscles, following a highly organized striated pattern. A similar distribution was observed in human muscle samples, chicken cultured myotubes, and isolated mouse myofibers. Immunohistochemical analyses, combined with biochemical cell fractionation experiments, reveal a strong co-localization of SVCT2 with intracellular detergent-soluble membrane fractions at the central sarcomeric M-band, where it co-solubilizes with sarcoplasmic reticulum proteins. Remarkably, electrical stimulation of cultured myofibers induces the redistribution of SVCT2 into a vesicular pattern.

Conclusions: Our results provide novel insights into the dynamic roles of SVCT2 in different intracellular compartments in response to functional demands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542426PMC
http://dx.doi.org/10.1186/s40659-024-00554-6DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
svct2
9
co-transporter svct2
8
skeletal muscles
8
svct2 intracellular
8
skeletal
5
sodium/ascorbic acid
4
acid co-transporter
4
svct2 distributes
4
distributes striated
4

Similar Publications

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

A Splice Site Variant in SENP7 Results in a Severe Form of Arthrogryposis.

Clin Genet

January 2025

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Objective: The objective of this study was to analyse the association between body composition and changes in health-related quality of life (HRQoL) of patients followed for hip and knee osteoarthritis (OA).

Methods: Longitudinal data from the Knee and Hip OsteoArthritis Long-term Assessments (KHOALA) cohort, a multicentre cohort of 878 patients with symptomatic knee and/or hip OA, were used. The main outcome criteria were changes in patient-reported outcomes measures, the Study Short Form-36 (physical functioning, pain, mental health and vitality) and the OsteoArthritis Knee and Hip Quality Of Life (OAKHQOL)(physical activity, pain and mental health).

View Article and Find Full Text PDF

Introduction And Importance: Neglected posterior hip dislocations in adults are rare, particularly when untreated for years. In developing nations, patients often rely on traditional bone setters, leading to delayed diagnosis and increased complications. Adult hip dislocations carry a higher risk of avascular necrosis and require complex treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!