AI Article Synopsis

  • - Conventional breeding has improved crop yields since the mid-1900s, but genomics introduces advanced tools for studying whole genomes, enhancing the accuracy of crop development.
  • - Techniques like molecular markers, genomic selection, and genome editing (e.g., CRISPR/Cas9) allow for precise trait mapping and faster breeding, improving characteristics like yield, resistance to disease, and stress tolerance.
  • - The paper discusses how genomic resources aid in plant breeding by identifying important traits, understanding genetic diversity, and speeding up breeding programs, ultimately leading to the creation of new plant varieties.

Article Abstract

Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542492PMC
http://dx.doi.org/10.1186/s40659-024-00562-6DOI Listing

Publication Analysis

Top Keywords

molecular markers
16
genomic selection
16
plant breeding
12
markers genomic
12
selection genome
12
genome editing
12
breeding
8
genomic
8
marker-assisted selection
8
selection
7

Similar Publications

Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.

View Article and Find Full Text PDF

Specific plasma metabolite profile in intestinal Behçet's syndrome.

Orphanet J Rare Dis

January 2025

Department of Rheumatology and Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.

Background: Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. However, there are few specific biomarkers for IBS. The purposes of this study were to investigate the distinctive metabolic changes in plasma samples between IBS patients and healthy people, active IBS and inactive IBS patients, and to identify candidate metabolic biomarkers which would be useful for diagnosing and predicting IBS.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light.

View Article and Find Full Text PDF

Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics.

Cardiovasc Diabetol

January 2025

Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.

Background: Existing cardiovascular risk prediction models still have room for improvement in patients with type 2 diabetes who represent a high-risk population. This study evaluated whether adding metabolomic biomarkers could enhance the 10-year prediction of major adverse cardiovascular events (MACE) in these patients.

Methods: Data from 10,257 to 1,039 patients with type 2 diabetes from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a prevalent complication among critically ill patients, constituting around 10% of intensive care unit (ICU) admissions and mortality rates ranging from 35 to 46%. Hence, early recognition and prediction of ARDS are crucial for the timely administration of targeted treatment. However, ARDS is frequently underdiagnosed or delayed, and its heterogeneity diminishes the clinical utility of ARDS biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!