High levels of thyroid hormones are linked to increased risk and advanced stages of breast cancer. Our previous work demonstrated that the biologically active triiodothyronine (T3) facilitates mitochondrial ATP production by upregulating Ca handling proteins, thereby boosting mitochondrial Ca uptake and Krebs cycle activity. In this study, different cell types were utilized to investigate whether T3 activates a Ca-induced signaling pathway to boost cancer cell proliferation. Using live-cell imaging, biochemical assays, and molecular profiling, differences in intracellular signaling among MCF7 and MDA-MB-468 breast cancer cells, non-cancerous breast cells hTERT-HME1, and PC3 prostate carcinoma cells, previously found to be insensitive to thyroid hormones in terms of proliferation, were investigated. Our findings revealed that T3 upregulates 1,4,5-trisphosphate receptor 3 via thyroid hormone receptor α. This boosts mitochondrial Ca uptake, reduction equivalent yield, and mitochondrial ATP production, supporting the viability and proliferation of breast cancer cells without affecting non-cancerous hTERT-HME1 or PC3 prostate carcinoma cells. Understanding the interplay between T3 signaling, organellar interaction, and breast cancer metabolism could lead to targeted therapies that exploit cancer cell vulnerabilities. Our findings highlight T3 as a crucial regulator of cancer metabolism, reinforcing its potential as a therapeutic target in breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539297 | PMC |
http://dx.doi.org/10.1186/s12964-024-01917-y | DOI Listing |
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFJ Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Int J Surg
January 2025
Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.
Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!