Background: Erythrocytes are susceptible to oxidative stress throughout their lifespan. While compounds like vitamin C can help mitigate oxidative stress, the exploration of natural herbal products continues to be a compelling area of research. To examine the impact of subfractions derived from acidified chloroform fractions of fenugreek (Trigonella foenum-graecum L.) on red blood cells in the presence of H2O2 as an oxidant, we assessed the factors associated with erythrocyte aging and oxidative stress.

Methods: The maceration technique was employed for extracting fenugreek seeds. Through chromatography, a total of 12 subfractions were isolated from the acidified chloroform extract of fenugreek seeds. Following an initial assessment, four subfractions exhibiting lower erythrocyte toxicity were chosen for further investigation. The objective was to evaluate their impact on erythrocyte aging by measuring the levels of phosphatidylserine (PS), sialic acid, CD47 on the erythrocyte surface, as well as oxidative stress biomarkers. The obtained results were presented as mean ± standard deviation (SD), and data analysis was performed by using ANOVA.

Results: The results of this study revealed, that among the 12 subfractions derived from the acidified chloroform fraction of fenugreek, four subfractions demonstrated protective effects against H2O2-induced hemolysis and oxidative stress. Furthermore, flow cytometry analysis indicated that treatment with three of these subfractions led to elevated levels of CD47 and reduced levels of phosphatidylserine on the surface of erythrocytes.

Conclusions: The results suggest that the subfractions of fenugreek extract which likely contain a higher concentration of flavonoids and a lower content of saponins could be responsible for the observed protection against erythrocyte aging processes. It appears that fenugreek seeds have the ability to safeguard human erythrocytes from oxidative damage by reducing oxidative stress, preserving the activity of antioxidative enzymes, and maintaining the integrity of erythrocyte structure.

Download full-text PDF

Source
http://dx.doi.org/10.7754/Clin.Lab.2024.240421DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
acidified chloroform
12
erythrocyte aging
12
fenugreek seeds
12
protective effects
8
fractions fenugreek
8
fenugreek trigonella
8
trigonella foenum-graecum
8
foenum-graecum red
8
red blood
8

Similar Publications

Clinical Relevance: Pseudoexfoliation syndrome (PXS) is a common age-related disorder associated with glaucoma and cataract. Despite its clinical importance, the pathogenesis of PXS is not yet fully understood.

Background: To evaluate levels of SCUBE-1 (signal peptide, CUB domain, and epidermal growth factor-like domain containing protein 1) in the serum and aqueous humour of patients with PXS in comparison with non-PXS controls.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!