Background: PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies. The present study aims to synthesize quinazolines containing caffeoyl moiety for developing innovative anticancer agents against the human breast cancer cell line (MCF-7).
Methods: A new quinazoline 2 was synthesized by reacting caffeic acid with 5-amino-phenylpyrazole carboxylate 1 in the presence of PCl3. Compound 2 reacted with NH2NH2.H2O to produce compound 3 through cyclo-condensation. Apoptosis and necrosis as well as inhibition activity compounds 2 and 3 against PGK1, and PKM2 were evaluated. The effect of compounds 2 and 3 on the levels of GSH, GR, SOD, GPx, CAT, MDA, Bax, Bcl-2, caspase-3, P53 and VEGF levels as well as PGK1, PKM2 and STAT3 gene expression were estimated in MCF-7 tumor cells.
Results: The viability of MCF-7 cells was reduced to 22.42% and 45.86% after incubation with compounds 2 and 3 for 48 hours, respectively. The IC50 values for compounds 2 and 3 are 62.05 μg/mL and 16.73 μg/mL. Furthermore, compound 3 exhibited more significant apoptosis and necrosis than compound 2. IC50 values of compound 2 against PGK1, and PKM2 at interval concentration equals 1.04, and 0.32 μM/mL, respectively, after 210 minutes of incubation. Moreover, compound 3 were revealed strong inhibition of PGK1, and PKM2 with IC50 values equals 0.55 and 0.21 μg/mL, respectively after 210 minutes of incubation. Our results proved that the incubation of compounds 2 and 3 with MCF-7 cells increased the levels of apoptotic proteins, elevated MDA, Bax, caspase-3 and P53 levels, depleted GSH, GR, SOD, GPx, CAT, Bcl-2 levels and downregulated the levels of STAT3, PGK1, and PKM2 gene expression significantly. Our In-silico results proved that compound 2 showed a stronger estimated binding affinity with a ΔG of -7.2, -7.5, and - 7.9 kcal/mol., respectively towards PGK1, PKM2 and STAT3 proteins. Also, compound 3 exhibits a strong binding affinity with ΔG of -7.9, -8.5, and - 8.7 kcal/mol., towards PGK1, PKM2 and STAT3 proteins.
Conclusion: The results show that compounds 2 and 3 induce apoptotic activity by blocking the PGK1- PKM2-STAT3 signaling pathway. The present investigation opens exciting possibilities for developing innovative new anticancer quinazolines bearing caffeoyl moiety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113816128337881241016064641 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
Background: Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.
Objective: Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat. This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).
Curr Pharm Des
November 2024
Biotechnology Department, Faculty of Applied Health Science Technology, October 6 University, Giza 28125, Egypt.
Background: PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies.
View Article and Find Full Text PDFVet Sci
August 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
The lion-head goose is the only large goose species in China, and it is one of the largest goose species in the world. Lion-head geese have a strong tolerance for massive energy intake and show a priority of fat accumulation in liver tissue through special feeding. Therefore, the aim of this study was to investigate the impact of high feed intake compared to normal feeding conditions on the transcriptome changes associated with fatty liver development in lion-head geese.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.
Epidermal growth factor (EGF) is known to be a critical stimulant for inducing the proliferation of glioma cancer cells. In our study, we observed that GST-RhoA binds to pyruvate kinase M2 (PKM2) in vitro. While EGF reduced the levels of RhoA protein, it significantly increased p-Y42 RhoA, as well as PKM1 and PKM2 in LN18 glioma cell line.
View Article and Find Full Text PDFFree Radic Biol Med
September 2024
Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China. Electronic address:
Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!