Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens.

Commun Biol

State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.

Published: November 2024

Menaquinone (MK) in bacterial membrane is an attractive target for the development of novel therapeutic agents. Mining the untapped chemical diversity encoded by Gram-negative bacteria presents an opportunity to identify additional MK-binding antibiotics (MBAs). By MK-binding motif searching of bioinformatically predicted linear non-ribosomal peptides from 14,298 sequenced genomes of 45 underexplored Gram-negative bacterial genera, here we identify a novel MBA structural family, including silvmeb and pseudomeb, using structure prediction-guided chemical synthesis. Both MBAs show rapid bacteriolysis by MK-dependent membrane depolarization to achieve their potent activities against a panel of Gram-positive pathogens. Furthermore, both MBAs are proven to be effective against methicillin-resistant Staphylococcus aureus in a murine peritonitis-sepsis model. Our findings suggest that MBAs are a kind of structurally diverse and still underexplored antibacterial lipodepsipeptide class. The interrogation of underexplored bacterial taxa using synthetic bioinformatic natural product methods is an appealing strategy for discovering novel biomedically relevant agents to confront the crisis of antimicrobial resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541763PMC
http://dx.doi.org/10.1038/s42003-024-07159-5DOI Listing

Publication Analysis

Top Keywords

gram-positive pathogens
8
discovery family
4
family menaquinone-targeting
4
menaquinone-targeting cyclic
4
cyclic lipodepsipeptides
4
lipodepsipeptides multidrug-resistant
4
multidrug-resistant gram-positive
4
pathogens menaquinone
4
menaquinone bacterial
4
bacterial membrane
4

Similar Publications

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

Pathogenic characterization and drug resistance of neonatal sepsis in China: a systematic review and meta-analysis.

Eur J Clin Microbiol Infect Dis

January 2025

Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.

Objectives: Neonatal sepsis is one of the causes of neonatal mortality and bacterial resistance to antibiotics is one of the challenges facing NICU. The aim of this study was to provide a basis for empirical antibiotic selection by comprehensively searching Chinese and non-Chinese databases for studies related to neonatal sepsis pathogenesis conducted in China and synthesizing all the results of the studies conducted in hospitals in China during the period under study METHODS: In this study, we conducted extensive searches of Pubmed, Web of Science, Cochrane, China Biology Medicine disc (SinoMed), China National Knowledge Infrastructure (CNKI) and Wanfang Data. We screened studies published from 2014 to 2023 that were conducted in hospitals in mainland China and involved bacterial blood cultures and susceptibility tests in neonates with neonatal sepsis and extracted the data, which were summarized using Stata 18.

View Article and Find Full Text PDF

The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S.

View Article and Find Full Text PDF

Cell Wall Protein 2 as a Vaccine Candidate Protects Mice Against Infection.

Vaccines (Basel)

December 2024

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.

Background/objectives: is a Gram-positive, spore-forming enteric pathogen that causes intestinal disorders, including inflammation and diarrhea, primarily through toxin production. Standard treatment options for infection (CDI) involve a limited selection of antibiotics that are not fully effective, leading to high recurrence rates. Vaccination presents a promising strategy for preventing both CDI and its recurrence.

View Article and Find Full Text PDF

Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!