A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reproduction of experimental data for stacked caffeine dimers using various computational methods. | LitMetric

AI Article Synopsis

  • Understanding the stacking interactions of aromatic molecules like caffeine is crucial for studying biopolymers' structure, stability, and functions.
  • The research identifies five types of caffeine stacking dimers through analysis of caffeine crystal structures and utilizes molecular mechanics and advanced theoretical methods for geometry optimization.
  • The best methods for accurately depicting caffeine dimer characteristics include MP2 with Basis Set Superposition Error correction, Poltev force field, and specific DFT functionals that align well with experimental sublimation enthalpy data.

Article Abstract

Reliable description of stacking interaction of aromatic molecules is important for the understanding structure, stability, and functions of biopolymers. The caffeine molecule is an ideal object for this study as the stacking interactions are the preferential ones for self-associations of this hydrophobic molecule without H-bond donor groups. The analysis of anhydrous caffeine crystal structures revealed five types of caffeine stacking dimers. Geometry optimization of these dimers was performed using two molecular mechanics force fields, ab-initio method Møller Plesset of the second order (MP2), and density functional theory (DFT) with different functionals. The comparison of geometric parameters of the caffeine dimers obtained using different theoretical methods with those in crystals enables us to suggest the methods providing the most reliable stacking characteristics. These methods are: the MP2 with Basis Set Superposition Error correction (MP2/CP), Poltev force field, along with PBE0-DH, SCAN and PBE-D3 functionals of DFT. For the methods, which give the dimer interaction energy close to that obtained by MP2/CP method, the evaluated sublimation enthalpy values are shown to be close to the experimental data. Additionally, MP2/CP, Poltev FF and PBE0-DH functional showed to be the methods that describe well both the energy and geometry of the caffeine stacking dimer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541902PMC
http://dx.doi.org/10.1038/s41598-024-77372-zDOI Listing

Publication Analysis

Top Keywords

experimental data
8
caffeine dimers
8
caffeine stacking
8
mp2/cp poltev
8
caffeine
6
methods
6
stacking
5
reproduction experimental
4
data stacked
4
stacked caffeine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!