Autophagy is a mechanism for the degradation of cellular components in eukaryotes and plays a critical role in plant responses to abiotic stress. As a core member of the autophagy process, ATG8's role in how plants respond to heat stress remains unclear. To investigate the response of the tomato autophagy core member ATG8f to heat stress, we studied the key gene ATG8f and generated tomato lines overexpressing SlATG8f using the recombinant expression vector pBWA(V)HS. We observed that under heat stress, SlATG8f overexpression (OE) plants exhibited decreased heat tolerance compared to wild-type (WT) plants. Specifically, OE plants showed increased relative electrolyte leakage, reduced soluble solid content, elevated chlorophyll content, and higher autophagosome numbers, with less damage to chloroplasts and mitochondria. Additionally, expression of some ATG8 family genes and heat shock protein-related genes was upregulated. Moreover, SlATG8f overexpressing plants had higher pollen vitality and more intact pollen morphology. These results suggest that while SlATG8f overexpression renders plants more sensitive to heat, it helps mitigate high-temperature damage to tomato pollen by maintaining chloroplast integrity and interacting with heat shock proteins to respond to heat stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541915PMC
http://dx.doi.org/10.1038/s41598-024-77491-7DOI Listing

Publication Analysis

Top Keywords

heat stress
20
heat
9
core member
8
respond heat
8
slatg8f overexpression
8
heat shock
8
stress
6
plants
6
overexpression slatg8f
4
slatg8f gene
4

Similar Publications

HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms.

Front Cell Dev Biol

January 2025

Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.

Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.

View Article and Find Full Text PDF

Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.

View Article and Find Full Text PDF

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.

View Article and Find Full Text PDF

Fracture resistances of heat-treated nickel-titanium files used for minimally invasive instrumentation.

BMC Oral Health

January 2025

Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Dental and Life Science Institute, Pusan National University, Yangsan, Korea.

Background: This study compared the torsional resistance, bending stiffness, and cyclic fatigue resistances of different heat-treated NiTi files for minimally invasive instrumentation.

Methods: TruNatomy (TN) and EndoRoad (ER) file systems were compared with ProTaper Gold (PG). Torsional load, distortion angle, and bending stiffness were assessed using a custom device AEndoS, and toughness was calculated using the torsional data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!