The objective of this study was to explore the effect of different surface treatments and bonding types on elemental composition and bond strength of dentin. Under water cooling, 1.5 mm of tooth structure containing just dentin was cut from 39 extracted human molars. Dentin surfaces were untreated (control) or treated by erbium: yttrium aluminum garnet or femtosecond laser (n = 13, each). One sample from each group underwent scanning electron microscopy. Then, dentin surfaces were bonded by Clearfil SE Bond or Clearfil SE Protect (n = 6, each). Energy dispersive X-ray spectroscopy was performed both after surface treatment and bonding application. The dual-polymerized resin cement was applied to dentin surfaces with a special teflon mold (diameter:3 mm × height:3 mm). After polymerization of the resin cement, shear force was applied at the resin cement-dentin interface. Elemental composition value (weight%) of dentin after surface treatment was analyzed by one-way analysis of variance (ANOVA), and the difference value in pre and post-bonding elemental composition by two-way ANOVA. Paired t-tests were executed to compare the weight% values of each element before and after each bonding application. Bond strength was analyzed by two-way ANOVA. The post-hoc test was Tukey's honest significant difference test. Both laser treatments increased the mineral content of dentin, compared to the controls (P<0.05). Application of bonding agents decreased the mineral content of dentin compared to the surface treated dentin. Bond strength was unaffected by either surface treatment or bonding type (P>0.05). For resin cementation, either surface treatment is suitable. After laser treatment, Clearfil SE Bond is recommended over Clearfil SE Protect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541589 | PMC |
http://dx.doi.org/10.1038/s41598-024-75709-2 | DOI Listing |
Phys Chem Chem Phys
January 2025
Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.
View Article and Find Full Text PDFACS EST Air
January 2025
Environmental Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.
Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, JAPAN.
Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!