Dyeing natural fabrics using supercritical carbon dioxide is challenging, especially without essential color hues. This work demonstrated that two newly developed reactive disperse dyes with distinct colors and shades were generated, one of which featured from the anthraquinone family and the other yellow, containing a pyrazole moiety. These new dyes and their combinations were used to dye cotton fabric using supercritical carbon dioxide and the highest K/S values were achieved at 8.73 for the mixture of (blue dye: yellow dye 80:20), however the lowest K/S was observed at 7.71 for (blue dye: yellow dye 20:80). The new dyes' chemical compositions were identified using elemental and spectroscopic analyses. The effectiveness of these dyes and their mixtures for cotton dyeing was discussed. The dyed samples were tested for color fastness, and the results indicated that they had excellent color retention and were highly durable in washing. The increasing patterns in both dyeing rate and build-up curves show good compatibility. Furthermore, desirable shades of green can be achieved by mixing blue and yellow dyes at various ratios in supercritical CO. The compatibility test involves calculating color difference index values for dyed cotton fabrics by utilizing various ratios of a binary mixture of dyes. Furthermore, the dyes under study and dyed samples displayed superior antibacterial properties against gram-positive and gram-negative bacteria compared to certain antibiotics used as a control. These results aligned with the quality and eco-friendly standards required by the industry without the use of water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541500PMC
http://dx.doi.org/10.1038/s41598-024-77606-0DOI Listing

Publication Analysis

Top Keywords

cotton fabrics
8
reactive disperse
8
disperse dyes
8
dyes mixtures
8
supercritical carbon
8
carbon dioxide
8
blue dye
8
dye yellow
8
yellow dye
8
dyed samples
8

Similar Publications

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

Unidirectional moisture-conducting fabrics were prepared by electrospraying polyvinylidene fluoride (PVDF) and polyvinyl chloride (PVC) onto three green fabric substrates, namely cotton, hemp, and modal. Experiments were conducted to examine the effects of coating thickness, coating material, and substrate material on the moisture conductivity of the fabrics. The electrospraying technique was effective in forming uniform and strongly adhered PVDF and PVC coatings on the fabric substrates, and the coating thickness and material type had a significant effect on the fabric's moisture conductivity.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.

View Article and Find Full Text PDF

A low chemical consumption cationization and salt-free dyeing process for cotton fabrics by reusing polyallylamine modification bath.

Int J Biol Macromol

January 2025

National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, PR China. Electronic address:

Cationic polymers have been used in the cationization of cotton fabrics for salt-free dyeing, but commonly used polymers are limited by their high molecular weight and low adsorption efficiency, leading to high dosage or complex modification conditions. In this study, polyallylamine with low molecular weight was found to be an efficient cationic agent for cotton modification and the modified fabrics can be salt-free dyed with different kinds of reactive dyes after the optimization of the modification process. Furthermore, the modification bath was reused by replenishing a small amount of cationic agent and adjusting the pH to the original level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!