Chlorinated organic pollutants widely exist in aquatic environments and threaten human health. Catalytic approaches are proposed for their elimination, but sluggish degradation, incomplete dechlorination, and catalyst recovery remain extremely challenging. Here we show efficient dechlorination using ferrous oxide/graphene oxide catalytic membranes with strong nanoconfinement effects. Catalytic membranes are constructed by graphene oxide nanosheets with integrated ultrafine and monodisperse sub-5 nm nanoparticles through simple in-situ growth and filtration assembly. Density function theory simulation reveals that nanoconfinement effects remarkably reduce energy barriers of rate-limiting steps for iron (III)-sulfite complex dissociation to sulfite radicals and dichloroacetic acid degradation to monochloroacetic acid. Combining with nanoconfinement effects of enhancing reactants accessibility to catalysts and increasing catalyst-to-reactant ratios, the membrane achieves ultrafast and complete dechlorination of 180 µg L dichloroacetic acid to chloride, with nearly 100% reduction efficiency within a record-breaking 3.9 ms, accompanied by six to seven orders of magnitude greater first-order rate constant of 51,000 min than current catalysis. Meanwhile, the membranes exhibit quadrupled permeance of 48.6 L m h bar as GO ones, because nanoparticles adjust membrane structure, chemical composition, and interlayer space. Moreover, the membranes show excellent stability over 20 cycles and universality for chlorinated organic pollutants at environmental concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541988 | PMC |
http://dx.doi.org/10.1038/s41467-024-54055-x | DOI Listing |
Adv Mater
January 2025
Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO SAAO electrocatalyst exhibits a low overpotential of 192 mV and superb stability over 650 h at 10 mA cm, enabling a practical PEMWE that needs only 1.
View Article and Find Full Text PDFNat Commun
January 2025
Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414000 Hunan, P. R. China.
The high-temperature proton exchange membranes suffer from weak binding strength for phosphoric acid molecules, which seriously reduce the fuel cell efficiency, especially operation stability. Introduction of microporous material in the membrane can effectively reduce the leaching of phosphoric acid. However, due to the poor compatibility between the polymer and fillers, the membrane's performance significantly reduced at high fillers content.
View Article and Find Full Text PDFACS Appl Polym Mater
January 2025
Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!