Periodontitis, characterized by microbial dysbiosis and immune dysregulation, destroys tooth-supporting tissues and negatively affects overall health. Current strategies face significant challenges in restoring damaged tissues while halting periodontitis progression. In this study, we introduce a live biotherapeutic product (LBP) in an engineered living hydrogel for comprehensive periodontitis therapy. A dental blue light-responsive hydrogel (LRG) was fabricated to deliver and confine live Lactobacillus rhamnosus GG (LGG) in periodontal pockets, endowing the LRG with sustained antibacterial and immunomodulatory effects. The LRG was engineered through peptide modification to also promote tissue regeneration. Both in vitro and in vivo evaluations confirmed the effectiveness of this integrated therapeutic strategy, which combines antibacterial, anti-inflammatory, and regenerative properties with an underlying immunomodulatory mechanism that involves suppressor of cytokine signaling (SOCS)3 upregulation and the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway suppression in macrophages. Demonstrating a new paradigm, this proof of concept highlights the synergistic integration of live organisms and synthetic material engineering in a chairside treatment to address the multifaceted etiology of periodontitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2024.10.001 | DOI Listing |
Nat Microbiol
January 2025
Sitala Bio, Cambridge, UK.
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use.
View Article and Find Full Text PDFFoods
December 2024
Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367-Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil.
(1) Background: Inflammatory bowel diseases (IBDs) are characterized by chronic and complex inflammatory processes of the digestive tract that evolve with frequent relapses and manifest at any age; they predominantly affect young individuals. Diet plays a direct role in maintaining the gut mucosal integrity and immune function. Regarding the diet, the administration of probiotics stands out.
View Article and Find Full Text PDFGut Microbes
December 2025
Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology.
View Article and Find Full Text PDFBiomaterials
December 2024
Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China. Electronic address:
Screening robust living bacteria to produce living biotherapeutic products (LBPs) represents a burgeoning research field in biomedical applications. Despite their natural abilities to colonize bio-interfaces and proliferate, harnessing bacteria for such applications is hindered by considerable challenges in unsatisfied functionalities and safety concerns. Leveraging the high degree of customization and adaptability on the surface of bacteria demonstrates significant potential to improve therapeutic outcomes and achieve tailored functionalities of LBPs.
View Article and Find Full Text PDFUrogynecology (Phila)
December 2024
Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA.
Importance: The effect of vaginal bacteria on wound healing is an evolving area of study. Bacterial vaginosis (BV), characterized by an overgrowth of anaerobic bacteria, is linked to increased surgical site infections after pelvic surgery. While BV-associated microbes are known to impair epithelial repair, their effects on fibroblasts, which are crucial for wound healing and prolapse recurrence after pelvic organ prolapsesurgery, are unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!