[Gastrodin improves microglia-mediated inflammatory response after hypoxic-ischemic brain damage in neonatal rats PI3K/AKT pathway].

Nan Fang Yi Ke Da Xue Xue Bao

Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.

Published: September 2024

Objective: To investigate the mechanism of gastrodin for inhibiting microglia-mediated inflammation after hypoxicischemic brain damage (HIBD) in neonatal rats.

Methods: Thirty-nine 3-day-old SD rats were randomly divided into sham group, HIBD group and gastrodin treatment group. Western blotting was used to detect the expressions of TNF-α, IL-1β, IL-10 and TGF- β1 in the corpus callosum of the rats. The potential targets of gastrodin for treatment of HIBD were screened by network pharmacology analysis. The expressions of PI3K/AKT signaling pathway proteins following HIBD-induced microglial activation in the rats and in cultured microglial BV-2 cells with oxygen-glucose deprivation (OGD) were detected with Western blotting. The effects of LY294002 (a specific inhibitor of the PI3K/AKT pathway) and gastrodin on TNF-α and TGF-β1 mRNA levels in BV-2 cells with OGD was detected with RT-qPCR.

Results: In the neonatal rats with HIBD, gastrodin treatment significantly decreased TNF-α and IL-1β expressions and enhanced IL-10 and TGF-β1 expressions in the ischemic corpus callosum. Network pharmacology analysis showed significant enrichment of the PI3K/AKT signaling pathway and a strong binding between gastrodin and PI3K. Gastrodin significantly promoted PI3K and AKT phosphorylation in neonatal rats with HIBD and in BV-2 cells exposed to OGD. In BV-2 cells with OGD, gastrodin obviously suppressed OGD-induced increase of TNF-α and reduction of TGF-β1 mRNA expressions, and this effect was strongly attenuated by LY294002 treatment.

Conclusion: Gastrodin can inhibit microglia-mediated inflammation in neonatal rats with HIBD by regulating the PI3K/AKT signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.12122/j.issn.1673-4254.2024.09.11DOI Listing

Publication Analysis

Top Keywords

neonatal rats
16
bv-2 cells
16
gastrodin treatment
12
pi3k/akt signaling
12
signaling pathway
12
rats hibd
12
gastrodin
9
brain damage
8
microglia-mediated inflammation
8
western blotting
8

Similar Publications

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (HIE) is the most common cause of death and long-term disabilities in term neonates. Caffeine exerts anti-inflammatory effects and has been used in neonatal intensive care units in recent decades. In our neonatal rat model of hypoxic-ischemic (HI) brain injury, we demonstrated that a single daily dose of caffeine (40 mg/kg) for 3 days post-HI reduced brain tissue loss and microgliosis compared to the vehicle group.

View Article and Find Full Text PDF

Prenatal toxicity of L-mimosine in Wistar rats.

Toxicon

December 2024

Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:

L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.

View Article and Find Full Text PDF

Hypoxic-ischemic brain injury (HIBD) is a major cause of neonatal mortality and long-term neurological deficits, with limited treatment options. Extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUC-MSC-EVs) have shown promise in neuroprotection, but the mechanisms remain unclear. This study explores how hUC-MSC-EVs protect neonatal rats from HIBD.

View Article and Find Full Text PDF

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!