[Bardoxolone methyl alleviates acute liver injury in mice by inhibiting NLRP3 inflammasome activation].

Nan Fang Yi Ke Da Xue Xue Bao

Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical University, Bengbu 233030, China.

Published: September 2024

AI Article Synopsis

  • * Researchers used mouse-derived macrophages and THP-1 cells to assess CDDO-Me's effects on various inflammasome activators and measured key inflammatory markers.
  • * Results showed that CDDO-Me effectively reduced the activation of the NLRP3 inflammasome in lab tests and significantly decreased inflammation and liver damage in mouse models of ALI, indicating its potential therapeutic role.

Article Abstract

Objective: To investigate the inhibitory effect of bardoxolone methyl (CDDO-Me) on activation of NLRP3 inflammasome and its mechanism for alleviating acute liver injury (ALI).

Methods: Mouse bone marrow-derived macrophages (BMDM) and THP-1 cells were pre-treated with CDDO-Me followed by treatment with Nigericin, ATP, MSU, intracellular LPS transfection for activation of NLRP3 inflammasomes, or poly A: T for activation of AIM2 inflammasomes. The levels of caspase-1 and IL-1β in the cell culture supernatant was determined with Western blotting and ELISA to assess the inhibitory effect of CDDO-Me on NLRP3 inflammasomes and its specificity. In the animal experiment, male C57BL/6J mouse models of acetaminophen-induced ALI were treated with low-dose (20 mg/kg) and high-dose (40 mg/kg) CDDO-Me, and the changes in serum levels of IL-1β, TNF- , AST and ALT were measured by ELISA and liver tissue pathology was observed using HE staining.

Results: In mouse BMDM and THP-1 cells, CDDO-Me dose-dependently inhibited the activation of NLRP3 inflammasomes without significantly affecting the secretion of non-inflammasome-related inflammatory factors IL-6 and TNF- or AIM2 inflammasome activation. In the mouse models of ALI, CDDO-Me treatment at both the low and high doses significantly reduced serum levels of IL-1β, AST and ALT, ameliorated histological changes and reduced inflammatory cell infiltration in the liver tissue, and the effects exhibited a distinct dose dependence.

Conclusion: CDDO-Me can specifically inhibit the activation of NLRP3 inflammasomes to alleviate acetaminophen-induced ALI in mice.

Download full-text PDF

Source
http://dx.doi.org/10.12122/j.issn.1673-4254.2024.09.05DOI Listing

Publication Analysis

Top Keywords

activation nlrp3
16
nlrp3 inflammasomes
16
acute liver
8
liver injury
8
nlrp3 inflammasome
8
bmdm thp-1
8
thp-1 cells
8
cddo-me treatment
8
mouse models
8
acetaminophen-induced ali
8

Similar Publications

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Mangifera indica (family Anacardiaceae), often acknowledged as mango and renowned for being a plant of diverse ethnopharmacological background since ancient times, harbors the polyphenolic bioactive constituent, mangiferin (MNG). MNG is a major phytochemical of Mangifera indica and other plants with a wide range of reported pharmacological activities, including antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects. MNG has also been utilized in traditional medicine; it is reportedly a major bioactive element in over 40 polyherbal products in traditional Chinese medicine (TCM), and two prominent anti-inflammatory, immunomodulatory and antiviral Cuban formulations.

View Article and Find Full Text PDF

Background: The spleen, as the body's largest peripheral immune organ and a crucial source of circulating monocytes, plays a significant role in the acute inflammatory response of spleen-derived macrophages to diseases. Therefore, studying the impact and mechanism of X-ray irradiation on spleen-derived macrophages' inflammatory responses is of great importance.

Method: Extracted and identified mice splenic macrophages were divided into four groups: control group, LPS and ATP co-stimulated non-irradiated group, LPS and ATP co-stimulated group irradiated after 6h, and LPS and ATP co-stimulated group irradiated after 12h.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!